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We report a direct measurement of the hydrodynamic interaction between two colloidal particles.
Two micron-sized latex beads were held at varying distances in optical tweezers while their Brownian
displacements were measured. In spite of the fact that fluid systems at low Reynolds number are
generally considered to have no “memory,” the cross-correlation function of the bead positions shows a
pronounced, time-delayed anticorrelation. We show that the anticorrelations can be understood in terms
of the standard Oseen tensor hydrodynamic coupling. [S0031-9007(99)08607-X]

PACS numbers: 82.70.Dd, 83.10.Pp, 87.80.Cc

Hydrodynamic interactions play a crucial role in many correlations. While it is counterintuitive that the motion
physically interesting systems, including colloidal suspen-of the spheres is anticorrelated, the time delay is also sur-
sions, polymers in solution, and the microscopic dynamicgrising in light of the fact that in fluid systems at low
of proteins. Colloids have a collective diffusion constantReynolds number, dynamics are determined only by the
that is affected by the distribution of neighboring par-instantaneous forces; there is no “memory” [11]. Further-
ticles [1], while hydrodynamics interactions are a crucialmore, the hydrodynamic interaction does not introduce a
ingredient in the theory of polymer dynamics [2]. Solventpropagation delay; it is represented by the Oseen tensor,
hydrodynamic effects also have a strong influence on thevhich is derived directly from the Navier-Stokes equation
microscopic dynamics and collective excitations of pro-and assumes instantaneous propagation of forces through
tein molecules [3,4]. It has been shown that secondarthe fluid. However, we show here that a stationary, time-
structural elements of a protein can move as collectivéndependent external potential can impose time-delayed
groups [5]. Thus protein molecules have been treated aorrelations between particles in solution and that one par-
deformable Brownian particles, which are subject to fric-ticle does “remember” where the other one was a short
tion and random forces from the surrounding solvent. Ustime before. The time delay is determined by the natural
ing such a model, Kitaet al. [6] found that, in particular, relaxation time of the harmonic well.
the dynamics of the low-frequency eigenmodes depend The notion of memory in these systems can be made
crucially on hydrodynamic effects. Furthermore, such hyprecise in the formal context of control theory and
drodynamic interactions are thought to play a key role ininear systems. The concept of “observability” is a
“steering” ligand-protein binding [7]. Experimentally, it mathematical measure of whether or not a system has
can often be difficult to isolate the effects due to hydro-memory, i.e., whether its complete internal state at some
dynamics since measurements are made on bulk systerpsint in the past can be determined from a measurement
with indirect methods. of its input and output variables [12]. Consider the case

Here we describe an experiment in which we directlyof two independent particles in potential wells in which
studied hydrodynamic interactions between individualone can measure the position of only one particle. Even
colloidal particles. Two microscopic latex beads wereif one knows the Brownian forces, the position of the
held a fixed distance apart in separate optical tweezersecond particle can never be calculated and the system
The position fluctuations of the beads were measureds unobservable. However, introducing hydrodynamic
from which we calculated correlation and cross-coupling renders the system formally observable, and
correlation functions. Previous studies have used similait is possible to calculate the position of the second
arrangements to study electrostatic forces between paparticle solely from measurements of the first particle and
ticles [8,9] and to measure the mutual diffusion constant&nowledge of the Brownian forces. The past history of
of two particles [10]. We use it as a simple model systenthe second particle is encoded in the position of the first.
with which to study in detail the effects of hydrodynamic  Experimentally, we studied an aqueous solution of
interactions between two particles. The tweezers functiofluorescent carboxyl-modified polystyrene latex spheres
as harmonic potential wells and can thus approximate with a diameter ofl.0 = 0.025 um at a volume frac-
variety of possible local forces. For example, one cartion of ¢ = 10~7. Atsuch a low concentration additional
imagine this system idealizing the dynamic motion of twospheres are typically several hundreeh away from the
subunits on a large protein complex. trapped beads and thus do not interfere with the measure-

The most striking feature of the experimental data is thanent either by hydrodynamically coupling to the beads
presence of a pronounced time-delayed dip in the crossr by diffusing into the traps. For some experimental
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runs, 1 M of NaCl was added to the solution to discrimi-

S ; ) Quadrant
nate between hydrodynamic interactions and possible ef- %D ohotodiodes
fects of surface charges. However, no difference in the Polarizing
data obtained from either solution was discernible. This beam splitter =@
is consistent with the fact that although van der Waals i
and Coulombic forces are significant at this experiment’s Microscope
force sensitivity, they do not vary appreciably over the objective
distance the beads move in their traps and thus do not sample cel Eﬁ ]
contribute to the cross correlations. The solutions were with r?wicrospheres ——
hermetically sealed in a sample cell with a depth of ap- Microscope

objective

proximately100 um and a width of 18 mm. The optical

potential was applied by means of a dual-beam optical

tweezers apparatus. Two orthogonally polarized beams

from an Nd:YAG laser ath = 1064 nm with an inten- z

sity of 80 mW each were focused with an immersion-oil ‘ i,y
X

microscope objective (Olympus PlanApO X 1.4) into
Schematic diagram of the optical tweezer apparatus.

the sample, with the focal plane lying approximately at a

depth of20 wm inside the sample cell. Each of the laserFIG. 1.

beams holds one of the microspheres in its focus, prolwo orthogonally polarized laser beams are focused into the

viding the harmonic potential wells for our experiment. S&mple cell, where each of them holds a microsphere. The
- light scattered from the microspheres is collected with a second

The lateral separation between focal spots and thus thﬁ%

g : ] croscope objective, separated by a polarizing beam splitter,
mean separatiofi between the particles along theaxis  and focused onto a position sensitive quadrant photodiode.
was varied between 2 antb um. The position of the Data points are acquired wit0 usec time resolution and an
beads was measured by imaging the light scattered frofdtimate position resolution of-1 nm. The force sensitivity is
the spheres onto quadrant photodiodes. For this purposg200 fN/vHz.

a microscope objectivi0 X 0.4) is placed on the other
side of the sample cell. A polarizing beam splitter Sepa"[aIIy obtained autocorrelation functions we also see a

rates the light from the two traps before it is focused Ontosecond exponential with a different time constant, both

the quadrant photodiodes. A sketch OT the apparatus ith and without a second bead present. This sec-
shown in Fig. 1. To reduce the polarization cross talk an

interference phenomena between the two traps, the tw nd time constant is typically an order .Of mqgmtude
) ’ @nger thanr,, and the corresponding amplitude is about
trapping beams are chopped a'te”.“"?t?'y ata freq“‘?r.‘cy 0% of the principal exponential. We attribute this sec-
100 kHz. Synchronous data acquisition yields positiona nd time constant to the motioﬁ of the bead along the
data for each of the particles that were contaminated b%eakerz axis of the trap, which couples to a small
less than a few parts per thousand from cross talk be- '
tween the traps. Typicallyl0’ data points representing
the position of the particles in their traps were acquired
at a rate of 50 kHz for each measurement, allowing us to

Orthogondally polarized
laser beams

measure forces as low as 10 fN. Subsequent data process-~ 200 i
ing consisted of subtraction of a base line stemming from E _ L £
the dark current of the photodiode and normalization by g 100 g toc0Melation s
the photodiode sum intensity to account for laser power & o L o %
fluctuations. Eventually, the autocorrelation functions for % A 5
each of the particles as well as their cross correlation was g "% - -10 §
calculated. From the latter, an offset resulting from long- & 5501 ¥ L5
term drifts of the experimental apparatus was subtracted. = - 20

Representative correlation functions are shown in Fig. 2.
The optical traps were calibrated by measuring the au-
tocorrelation function of a bead in one trap with the
other trap empty. One expects to find an exponentiaf|G. 2. Longitudinal correlation functions of the position of
relaxation whose time constant. is the friction coef- the two beads. The upper curve shows the autocorrelation
ficient of the bead divided by the lateral spring con-function of a single bead in its trap, together with a double
stantk of the trap. The friction coefficient is known exponential fit. The lower curves show the cross-correlation
t ithi f ) t d th the t t th functions of two beads held at separations of 9.8, 4.8, and
0 within a few percent, an us the trap strength can ; um, respectively, together with the theoretically predicted
be determined. The spring constants of the traps wergurves, as detailed in the text. Only every third of the

balanced to within a few percent. In the experimen-experimentally obtained data points is shown.

time (ms)
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degree into the detector signal. This notion was verified (R, ;(1)R,,;(0)) = (R2;(¢)R;,;(0))
by changing the depth of the plane of focus inside the

sample cell, thus changing the trap strength in ghei- = 5 ksT (e~ !WHed/mi _ p=tl=e)/m)
rection. The time constant of the second exponential 2k;
changed accordingly. Since the two time constants dif- (5)

fer vastly, the contributions from the motion of the bead

along either axis are readily distinguishable. Indeed, ahere the fundamental relaxation time = (/k; is
double exponential decay fits the experimentally obtainedetermined by the trap strength and the friction of the
autocorrelation functions perfectly, yielding the time con-pead /. The dimensionless parameter describes the
stants for motion in ther and z axes and a calibration ratio between the mobility of the beads and the strength of
factor for the amplitudes. A similar effect has been ob-the hydrodynamic coupling between them, which amounts
served with localized dynamic light scattering [13]. to &, = 3a/2E for motion in the longitudinal axis of the
For a theoretical framework to understand the autopeads and:, = &, = 3a/4E for the transverse axis. In
and cross-correlation functions, we utilize the Langevinour experiment, a typical value ef. was 0.45 ms, which
equation [2] for the stochastic motion of particles in acorresponds to a trap stiffness of 18.5/fphn.
fluid and external potential. The equations of motion for  Armed with the analytical expressions for the correla-
the particles are tions between the spheres we can now interpret the ex-
AR, 2 perimental results. First, we note that the autocorrelation
— = Z H,.R, — R,)[-kR,, + £,()]. (1) functionsin Eq. (4) consist of two exponentials with equal
dt m=1 amplitude and time constants that are very close to the
fundamental relaxation time of the traps, compared to
% single exponential decay with twice the amplitude and a
relaxation timer, for a single trapped bead in absence of
-0 Ny — -1 o any hydrodynamic interactions. In fact, the change in the
{En(0)) = 0; EnOF (1)) = 2H,,, ks T8 (8 = 1), autocorrelation functions due to the presence of the sec-
(2)  ond bead turns out to be so small that it is not noticeable
in the experimentally obtained autocorrelation functions.
The hydrodynamic interactions of the particles with theqowever, the split in the time constants dominates the
surrounding fluid are described by their mobility matrix cross-correlation function [Eq. (5)]. Physically, it reflects

Brownian forces are represented by randomly fluctuatin
functionsf,,(¢) which satisfy the following correlations:

H,,,, which is also known as the Oseen tensor: the asymmetry of the hydrodynamic interaction: Since
I 1 L one sphere tends to drag the other in its wake, correlated
H,,(R) = 2; H,,.(R) = W (I + RR). (3) fluctuations relax faster than anticorrelated fluctuations, in

which the fluid between the spheres must be displaced.

{ = 6mna is the friction coefficient of a sphere of radius ~ Sincer is known from the trap calibration, the cross-
a in a solvent with viscosityn, I denotes the3 x 3  correlation function [Eq. (5)] can be predicted exactly
unity matrix, andR is the unity vector parallel t&R.  With no free parameters. A small correction accounting
Higher-order corrections to the matrix elements in Eq. (3for the coupling in ther direction can also be computed.

are small, scaling aga/E)* for the diagonal elements This correction is calculated with Eq. (5) using the
and (a/E)? for the off-diagonal elements [14]. Under time constantr. and the amplitude of the secondary
our experimental conditions, these corrections are alway@Xponential from the autocorrelation functions. It mostly

smaller than 1% or 3.5%, respectively. Since the couplindiffects the shape of the tails of the curves at longer
in Eq (3) is non”near’ there is no genera| C|Osed_forrnt|mes, while it remains below 3% near the minimum. The

solution to Eq. (1). However, since individual beadsresult of this proceqlure is shown for thre_e representati\_/e
move only with a rms amplitude of 16 nm in the trap, CUrves together with the gctugl experimental data in
R, — R, = E%, and thus to a good approximatidh,,,  Fi9- 2. In thg transverse dlrect_lon (data not shown) the
is constant and Eq. (1) is linear. cr_oss-correlatlon f.unctlons_are.m guantitative agreement

It is then a straightforward calculation to find the With Eq. (5), verifying the directional dependencesof
normal coordinates in which Eq. (1) decouples, and then The cross-correlation curves exhibit a time-delayed
the correlation functions for the vector componelts anticorrelation with a pronounced minimum afi, =

(i = x, y, z) can be directly calculated: (7:/2&;)In[(1 + &;)/(1 — &)] = 7;. The depth of the
minimum
(R1,i(1)R1,j(0)) = (R2,;(t)R2,;(0)) - -
RiTiR,'O z_—BSin 8,'2__3 &
= 5ij kZBkT (eft(1+81)/7'1 + e*f(lf&)/ﬂ)’ < 1’( ) 2’( )> e k; r( ) e k;
(4) (6)
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0 - likely a systematic error due to double scattering from the
spheres or optical near-field effects.

In conclusion, we have directly measured the effects of
hydrodynamic coupling on the dynamics of two particles
held in potential wells and shown that the observed time-
delayed anticorrelation between the particles can be un-
derstood in the framework of Langevin dynamics. The
hydrodynamically coupled spheres also serve as a gen-
eral model system and might help in understanding micro-

o scopic biological dynamics. Itis conceivable that proteins,
0.00 0.05 010 045 0.20 0.25 organelles, or even cells use hydrodynamic correlations to
a/E synchronize signaling or other collective behavior.
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