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1 Introduction

The present study was motivated by the question of adoption of agri-environmental measures (to
be further noted AEM) by farmers in Europe. The European Union is presently proposing financial
help to farmers who accept to modify their agricultural practices towards environmentally friendly
practices such as input (fertilisers and pesticides) reduction, biological farming, set-aside etc. In
practice, at some local level, farmers have to decide whether to accept a contract implying some
financial help in exchange for the adoption of well defined agricultural practices in their farm.
Such a reorientation of the Common Agricultural Policy from subsidies to production towards
environmentally friendly practices involves a lot of changes, equivalent in amplitude to those induced
by the technical revolution for farming in the beginning of this century or the green revolution in
the less developed countries. We might expect that the present process will develop in time, hence
the idea to use a dynamical approach similar to the one used in the study of technological change.
In fact, most modeling of innovation diffusion is presently based on the ideas that:

e a new innovation is always beneficial;

e the rate of adoption of the innovation is limited by the propagation of information from
innovators to potential innovators (Degenne and Forsé 1994)".

The standard metaphor is then epidemiology, and innovation diffusion is treated as the propagation
of an epidemics through a susceptible population; individual ”infection” events are thus propor-
tional to a frequency of encounters between infected and non-infected individuals. In the case of
random encounter across the whole population, these hypotheses lead to a logistic equation and
the well-known S curve for adoption.

We will here depart from these standard hypotheses. A first variant from the hypothesis of
random encounter across the whole population is to suppose the existence of a social network :
"efficient” encounters only occurs among connected individuals (Degenne and Forsé 1994). Some
studies use empirical networks to study buying patterns of teenagers for instance (Farrell 1998).
The absence of knowledge of actual patterns in most interesting situations lead researchers to work
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on 2d spatial lattices as models of social networks (Foélmer 1974). One can think of three kind of
reasons to work with 2d spatial lattices.

e Relevance: lattices might be relevant to the case when space is the support of information
transmission: one can imagine for instance farmers observing activities of their neighbours.
Another case where space plays role is when the diffusion of a chemical or biological species
plays a role in ”profits” related to the adoption of the innovation. For instance pollution,
obviously related to the adoption of polluting techniques, propagates in space (Weisbuch et
al. 1996). The same relation is important between pests and the use of pesticides.

e Insight: 2d lattices allow to easily visualize simulation results and gain some insight in the
important dynamical processes.

e Search for generic properties: imitation phenomena often results in collective behaviors with
well characterised dynamical regimes and clear cut regime transitions when parameters are
varied. We will search for these regimes and their transitions on 2-d lattices, conjecturing that
these semi-quantitative properties are generic for a large class of more complex architectures
(Weisbuch 1990).

We will then start from the 2d lattice metaphor, adding as a second feature the relative use-
fulness of the innovation. We want to take into account the fact that the innovation might not
be equally beneficial for all agents. Some agents might be in a position such that the innovation
is clearly beneficial and they should adopt it as soon as they hear about it for instance, while
for others the extreme opposite is true: whatever other agents are doing, they should not adopt.
In between, other agents might decide upon the choices made by their connected neighbours. In
that respect, we are supposing that what makes sense to agents is what the others actually do;
information by itself is not sufficient to make agents change their minds.

We then suppose that farmer adoption decision is motivated by technical and economical reasons
on the one hand, plus social factors which include the dynamics of influences across social networks.
The purposes of the study are several.

e We first want to describe and understand the dynamics of adoption of AEM. But we are facing
two difficulties: we lack empirical data about the structures of social networks and about the
time series of adoptions. One purpose of our modeling is then to characterise features of
the dynamics that are specific of certain dynamical regimes, such as limits to adoption for
instance, or patterns. These emergent features observed on the simulated systems could then
be compared to static empirical data.

e One can also take a normative approach: at a global level, policy makers have to choose
the level of financial incentives which would result in some uptake of AEM by a population
of farmers. At the local level, agricultural advisers have to schedule the allocation of their
information and persuasion effort among individual farmers. A better understanding of the
adoption dynamics could help the administration to better control (in the sense of control
theory) adoption, or at least to achieve acceptable level of uptake.

We have presently built and checked models based on the following hypotheses:

- 2 dimensional models in the case when adoption is not always beneficial, were studied by
analytical methods for equivalent agents, and by also using numerical simulations in the case of
distribution of agents characteristics.

- For the purpose of comparison, we also studied randomly connected networks: in our view,
the degree of structuration of social networks is intermediate between these two extremes, and
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Figure 1: Model geometry: Periodic boundary connections are displayed on the left. The black cell
in the middle of the right figure receives input signals from its eight neighbours (the white cells).

properties common to both 2d lattices and random nets have good chances to be generic, and thus
applicable to social nets.

For the 2d simulations, the most relevant metaphor is 2 dimensional crystal growth on surfaces,
rather than epidemiology. We will then use here the standard Ising model of statistical physics.
Although first established to interprete ferromagnetism, this model and its variant are used in
physics to describe all sorts of cooperative phenomena. Recent applications to social phenomena,
are described in Galam (1997), Kohring (1996) and Moss de Olivera et al (1999)2.

We here discuss AEM adoption, but most of what we say applies as well to brand selection,
technical change or adoption of any isolated cultural trait.

2  Adoption dynamics on a uniform 2d lattice

We start with a geography of farms lying on a flat-land at the nodes of a 2-D lattice, each farmer
being connected to his neighbourhood (V') for information exchange about adoption. To reduce
boundary effects periodic boundary connections have been chosen: the lattice is displayed at the
surface of a torus 3.

Figure 1 displays the torus construction and the neighbourhood.

2There exists an abundant literature in physics discussing related phenomena at a formal level far above the
discussions of the present paper. The above quoted papers and the book by Moss de Olivera et al (1999) are a good
introduction to this literaure.

30ne could also assume strict borders with no connections across.



At each time step farmers * have the choice to accept ( state 1) or to refuse the contract (state
0) according to some estimated utility functions . We start from ’absolute utilities’, or total
incomes of the farm system, in the two cases when contracts are accepted (uq) or refused (uy).

In absence of neighbourhood, a ”monadic” farmer could choose the option with the highest
utility.

We propose to take into account social influence by adding a ”social” term to the absolute
utility function. The argument of the choice function, difference of ’effective utilities’ is:

AU = Au+ J(2f, — 1) (1)

where Au = u; — ug is the difference in absolute utilities, J is a scale coefficient, and f; € [0, 1],
the proportion of choices 1 of the neighbourhood is defined as:
vy

vj, being the number of neighbours which made choice k7.

The additional "social” term is interpreted in several ways in the standard literature on social
choice :

- One might consider that several connected innovators experience an increase in the utility of
innovation because of direct interactions. For instance, in the case information is necessary to the
use of the innovation, new innovators can share the information. The same argument also applies
to common struggle against pests or pollution.

- Another possible view, is to interpret the additional term as providing to an eventual adopter
some extra information about the interest of the innovation. If agents were purely rational and
knew exactly the possible advantages of innovation, they would decide according to their own
appreciation of utilities. Since their knowledge about the innovation is imperfect, they might shift
their expectation of utilities according to the choice of their neighbours. The factor J is a measure
of the influence of their neighbours’ choice with respect to their evaluation of utilities. The above
interpretation is commonly used in the description of fads and herd behaviour (Follmer 1974,
Arthur and Lane 1993, Kirman 1993, Orléan 1995). It is the one we have in mind in the present
paper.

From now on, we will refer to absolute utilities Au and to effective utilities AU in the rest of the
paper, although both quantities are actually differences between the utilities for different choices 1
or 0.

*We are choosing here parallel updating rather than sequential updating: all farmers are taking decision at each
time step. The rationale for this choice, simultaneity of decision, is that there exist a yearly deadline for grant
application, and that any imitation behavior is based on the observation of the changes induced by grant acceptance,
or refusal, of neighbouring farmers. This is also consistent with the fact that farming is a seasonal activity; the
“natural” time step thus represents one year.

% Although some AEMs allow a graded response from farmers, in the sense that they can accept the environmental
friendly policy on part of their farm, the present paper only discusses all or none decisions, accept or reject for the
whole farm.

5The wording does not imply that economic factors are the only ones taken into account by farmers: the utilities
can also include considerations about time, pleasure, state of the environment, psychological factors such as fame or
good relations with neighbourhood etc...

"The J(2f1 — 1) term is a summation of contribution of adopters, each contributing .J/(vo +v1) and non-adopters,
each contributing —J/(vo + v1).



Figure 2: The figures show the first 6 time steps of adoption dynamics starting from a seed made of
two adopters (the central pair of black cells). Gray level code time steps. The threshold for growth
is 2 adopting neighbours.

2.1 Deterministic homogeneous model

Let us first consider the simple case where all agents have the same difference in absolute utilities
Au. We also suppose that the choice function of the agent is deterministic: an agent takes the
choice with the highest utility - i.e. choice 1 when AU > 0, choice 0 otherwise. The model is then
a simple cellular automaton of the counter type ( see e.g. Vichniac 19868, Weisbuch 1990): any
cell takes a state 0 or 1 according to the number of its neighbours in state one. If this number is
larger than a threshold, it takes state 1, and otherwise state 0. The threshold depends on the ratio
between Awu and J times the total number of neighbours.

Let us take a square lattice, and a neighbourhood of 8. Let us assume without loss of generality
that J = 1. Equations 8 and 9 give as a condition for innovation adoption:

Au+%>1 (3)

When Auw is larger than 1, growth of adoption occurs in any condition in one time step.

For 0.75 < Au < 1, the threshold is one neighbour adopting. Any seed at state 1 in a ocean of
0 generates a cluster which grows to fill the lattice.

For 0.5 < Au < 0.75, the threshold is two neighbours. As seen on figure 2 any seed of two
adopters distant by less than 2 grows to fill the lattice. Growth is fast, occurs regularly and growing
domains have diamond shapes.

For 0.25 < Au < 0.5, the threshold is three neighbours. As the figure 3 shows, several con-
figurations of three initial adopters are able to grow and fill the lattice. But one type of ”corner”
configuration has a very limited growth. Growth is slower and roughly isotropic.

Figure 4 shows the variation of the fraction of adopters in time starting from a seed of 2 and 3
contiguous adopters for thresholds of respectively two and three adopters. The lattice size is 20x20.
Other simulations with larger lattices give the same S shape. Characteristic times (e.g. at fraction
one half) scale in proportion of the linear size of the lattice and the approximate one half ratio in
growth times between the two and three threshold conditions is maintained.

Four neighbours are necessary when 0 < Awu < 0.25, but no initial configuration of four neigh-
bours is able to grow and fill the whole lattice if isolated.

8The paper by Vichniac is a good indroduction to the cellular automaton approach to invasion



Figure 3: The figures show the first 16 time steps of adoption dynamics starting from a seed made
of three adopters (the centered triplet of black cells). Gray level code time steps. The threshold
for growth is 3 active neighbours. Note than one triplet is not a hopeful monster.



0 5 10 15 20 25
t

Figure 4: Time (x axis) evolution of the fraction of adopters (y axis) in a 20x20 grid, starting
from a seed of two adopters for threshold of 2 (AU = 0.51, continuous line) and three adopters for
threshold of 3 (Au = 0.251, dotted line).
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Growth patterns from different initial conditions of early adopters can also be monitored by
simulation (see figures 2 and 3).

Symmetrical computations, with the possibility of growth of non-adopter regions in a ”sea” of
adopters, can of course be done for negative values of Aw.

2.2 Statistical approach to minimal density of initial adopters

If we start from a random distribution of initial adopters® , growth depends statistically on their
initial density when 0 < Au < 0.75 as we can see in figure 6 obtained by averaging simulation'?
results. For low initial densities, seeds made of several neighbouring adopters might not be present
in a finite sample. In other words, the same initial density of early adopters might result in
completely different outcomes, total invasion of adoption or no growth. As we discuss further, the
relevant parameter is not the average density, but its actual spatial distribution, and actually the
existence of "hopeful monsters”; furthermore average rate of adoptions might poorly characterise
the actual situation. In the present case, we are observing an all or none outcome and can deduce
the fraction of 0 or 1 outcome from the average adoption curve. For the more complicated cases that
we discuss in the next section, one has to use histograms of of adoption rates for a large number
of simulation (figure 9). At this stage, let us notice that we observe here a large dispersion of
results for random distributions with the same average characteristics, a typical feature of complex
systems in the neighbourhood of criticality.

The computation of the probability of hopeful monsters - those initial clusters of adopters
susceptible to invade the whole lattice - is straightforward, but involves some delicate combinatorics.
Let us give the simplest example for the case of threshold 2. Hopeful monsters are pairs of adopters
separated by a distance of at most 2 (figure 5 on the left). Any early adopter has then a probability
p to have another specific adopter as a neighbour which is:

p=24/N (4)

where 24 is the number of cells available as “useful” neighbours and N is the total number of lattice
sites. If m early adopters are randomly generated in successsion, the probability P that none of
the m early adopter has any ”useful” neighbour can be written

P=(1-p)(1-2p)(1—3p)ec(l = (m —1)p) (5)

since the mth early adopter has a (m — 1)p probability to “land” in the vicinity of another early
adopter already present on the lattice. p being small, this probability P remains close to one as long
as m is small. For large m values, P goes to zero exponentially. We can estimate the magnitude
of m such that P is intermediate by approximating 1 — ip by exp(—ip). The probability is then

written:
P = eap - (221 )

We can think of initial adopters as exceptional agents which Aw is larger than one; another interpretation in
terms of policy or advertising, is that special efforts have been applied by agricultural advisers or sales-persons to
convince them to adopt.

19The simulation computer program is the direct translation of the model described in this paper. In general
adoption is ”sticky”: once a farmer has adopted, he remains an adopter. A variant from this rule was run, taking into
account the fact that adopters only commit for adoption for a period of five years. In fact, for deterministic version
of the program (i.e. except for section 4.3), this makes negligible difference on growth. We use two versions of the
program. Onme version has a graphical on-line display allowing to visualise adoption kinetics. Figures 2 and 3 were
generated from this version. The other version without graphical interface, allows statistics and loops on parameters
values. Figures 6 to 11 were generated from this version.




Figure 5: Hopeful monsters. The configuration on the left represents the possible initial configu-
rations (seeds) of a hopeful monster when the threshold is 2 active neighbours: one of them is the
black circle and the white circles are all possible positions of the second one ( the “destiny” of three
of these monsters are represented on figure 2). The two other configurations, on the right, corre-
spond to a threshold of 3: white circles are all possible positions of the third active site according
to the relative positions of the first pair of active sites represented in black ( the “destiny” of three
of these monsters are represented on figure 3).
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Figure 6: Probability (y axis) that all agents adopt at ”infinite” time as a function of density of early
adopters (x axis) for threshold of 2 (AU = 0.51, dotted line) and for threshold of 3 (AU = 0.251,
continuous line). Each dot represents an average obtained with 500 samples.

Computing a characteristic m. such that the argument of the exponential is one gives

N
~ = 7
me 13 (7)
We used for simulations a 20x20 square lattice. The prediction from expression 14, m. ~ 6 corre-

sponding to a density of initial adopters n. >~ 0.015, is verified by the numerical simulations.

3 Deterministic models with distributions of farmers characteris-
tics

We have no reason to assume that all agents share the same characteristics. After all, we have in
mind farmers whose income, expenses and criteria of choice vary largely.

We will model the variety of agents characteristics by introducing some randomness in the
distribution of utilities and connections of the agents. We will first deal with frozen disorder, i.e.
we suppose that some distribution of characteristics is chosen at the beginning of a simulation and
that all chosen parameters are kept constant for the time of the simulation. Such models are then
deterministic. We will refer to another source of variation, random change of agents parameters
with time as random noise, to be discussed in the next section, on probabilistic models.

10



Figure 7: Interfacial growth from clusters. Numbers inside circles indicate times of adoption.
Growth from the central square of circles (labeled 0) could not occur if all thresholds were three,
but when a seed (labeled 1) with a lower threshold of two is present at the interface it adopts at
time 1. Adoption of others neighbours at later times indicated by the labels is then allowed by the
presence of the seed.

3.1 Inhomogeneities in utilities

Let us first study the influence of a distribution of different Au among agents. We have chosen to
add to the average Au,, a random term drawn from a Gaussian distribution with a given width
ou. The random term is constant in time.

A direct on-line examination of computer simulations show that growth is favored by the random
terms in the region of intermediate average Au,. Initial clusters that would otherwise disappear or
be limited to small regular size have ”seeds” on their periphery, due to agents with Au larger than
average. Interfacial growth can then proceed from these seeds. The process is illustrated on figure
7. Depending upon the density of initial adopters and the spread of the distribution of Au, growth
can fill most of the lattice or remain limited to only a fraction of it. Averaged statistics taken for
500 samples are presented in figure 8; they show the increase of the final fraction of adopters d;
with the magnitude of the random terms in conditions when average Awu and initial densities n
would not permit growth without these random terms (for the sake of comparison, the same pairs
of average Au and initial densities n, 0.24, 0.05 and 0.48 , 0.01 are used in the following simulations
figures 8, 9, 10, 11 and 12).

In fact, as earlier mentioned, these curves averaged over many simulations only give partial
information: an average of dy = 0.5 could correspond to half densities being 0 and half being 1
(perfect bimodality), or to the opposite case of a distribution uniform on [0,1]. We investigated the
issue by plotting the corresponding histograms of dy for points represented in figure 8 and found
that intermediate values of the average final densities can correspond to very different distributions
as observed on histograms represented in figure 9.

The bins for the histograms were the ten decimal intervals plus the two extremal discrete
bins corresponding to dy = 0 and dy = 1. Once more, the most striking feature to observe is
the dispersion of results for equivalent randomness distributions. The distribution of utilities is
insufficient to predict the outcome of the imitation process; for this purpose one would have to
know the precise spatial distribution.

11
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Figure 8: Average fractions of adopters at ”infinite” time as a function of width of distribution
ou (x axis). Averages are taken from 500 samples. For average A u = 0.24 (dotted line), initial
densities of adopters are n = 0.05 and for Au, = 0.48 (continuous line), n = 0.01 .
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Figure 9: Histograms of fractions of adopters d; at ”infinite” time as a function of width of
distribution ou (y axis). Averages are taken frdth 500 samples. Initial densities are the same as
for figure 8. The bins along the x axis are the ten decimal intervals plus the two extremal discrete
bins corresponding to dy = 0 and dy = 1. a) the upper histograms correspond to Au, = 0.24; b)
the lower ones to Au, = 0.47.



e When Au, = 0.24 the gradual increase in average d; corresponds to a gradual filling of the
intermediate bins when ou increases and reaches a magnitude comparable to Au, (figure
9a). As checked by direct examination of adoption dynamics, the disorder in utilities allows
interfacial growth and appearance of big clusters of adopters; but this process most often
stops before filling the whole lattice.

e But when Au, = 0.47 nearly all samples are in the extremal bins, which implies that whenever
growth starts it invades the whole lattice. The total invasion process is of course favored by
large values of ou.

The online observations explains the phenomenon. Awu, = 0.48 is close to a threshold for growth
of two neighbours (0.5). All the cells on the periphery of a cluster are then “candidate” interfacial
seeds for surface growth since they already have two adopting neighbours. They are "actual” seeds
when their Awu is larger than 0.5. Let us consider the configurations of hopeful monsters of figure 5
corresponding to a seed of 2. In the case of a diagonal pair of neighbours for instance, the number
of possible interfacial seeds (opportunities) are s1 = 2 at the first step and s2 = 8 at the second
step !! (figure 2 is an illustration of the situation from the second step on) . Averaging over all 24
hopeful monsters we get 1.66 opportunities for the first step and 6.33 for the second step. We can
compute the probability 7 of filling a site with two occupied neighbours.

0.02

=1- —)=1—gq. 8
T erf( p— ) q (8)
Where ¢ is the probability that the site stays empty and erf is the error function. The argument of
the error function represent the probability that the random term is smaller than 0.02, the quantity
needed to complement Awu to 0.5, thus allowing adoption. The probability P1 that at least one site

among sl opportunities at the first step is an actual interfacial seed is then:
Pl=1-¢" (9)

The probability P2 that any site among s2 opportunities at the second step is actual interfacial
seed is then:
P2=1-¢"% (10)

These expressions show that when ou is large enough to give a non negligible probability of adoption
at the first step, the chances are high that the process carries on to the second step which offers
nearly four times more opportunities. For instance when P1 = (.3, the above expressions give
P2 = 0.75. Chances carry on increasing at further steps, hence the observation that if growth
starts, its ends by filling the lattice (figure 9b).

On the opposite, Au, = 0.24 is close to a threshold for growth of three neighbours (0.25).
Only the re-entrant corners or lines of at least three adopters, are then possible seeds for surface
growth. Computation of opportunities at the first two steps on the hopeful monsters give a ratio
of opportunities of two between the second and the first step. This slower increase in opportunities
is also observed at further steps. Initial growth does not then guarantee that the whole lattice will
be invaded. Finite size clusters remain at large times, and intermediate d; bins are observed in the
histograms (figure 9a).

"The corresponding figures are 4 and 8 for a horizontal pair of neighbours, 1 and 6 horizontal pair of next nearest
neighbours, 1 and 4 for diagonal pair of next nearest neighbours and 1 and 5 for the remaining case.
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3.2 Inhomogeneities of influence

We might expect the connection structure and intensities to vary between neighbours. One can then
think of a random, non-symmetrical, matrix of connections among neighbours. We have chosen
a slightly more regular structure which takes into account the ideas of influence and influential
leaders. We suppose that some agents because of their social status, supposed wisdom, or more
simply because of their wealth, are more influential than others (see for instance Latane and Nowak
(1997)). The social term of equation (8) influencing agent 7 is then generalised to:

2.5 JiS;
Zj JJ‘

where J; is the social influence of agent j and Sj is a state variable which takes value + 1 for choice
1 (adopt) and -1 for choice 0 (non-adoption). Simulations were done for Gaussian distributions of
influence with width oJ. Average J were 1. Once more, for statistical purposes, 500 samples were
taken for each set of parameters. We again observed a lot of dispersion in the adoption fraction for
equivalent distributions of randomness.

To compare the results with those of the previous section (width in ou), we have to figure out
the change in J which produces the same effect on an agent ¢, via changes in effective utilities
AU, as a change in absolute utilities Au. Since agent 7 is influenced by eight neighbours, the
effectiveness of changes in J are roughly'? in a ratio one eighth with changes in Au. We have then
chosen to scale up by a factor 8 the oJ simulation parameter with respect to previous simulation
in ou. On the other hand, since agent j acts on eight neighbours, the spatial range of the effects
of influence increase is much larger than when absolute utility is increased, which we observed in
the simulations.

Simulations show that the main difference between the effect of randomness in J with respect
to randomness in Aw is the appearance of islands of resistance to adoption organised around
influential leaders (which can occur either as strong individual leaders or even small clusters of self
re-enforcing but not necessarily very strong leaders). In contrast a strong deviation in A can only
lead to isolated resistant individuals, unless of course there exists some spatial correlation in the
distribution of absolute utilities, a feature not studied in our simulations.

(11)

e When Au = 0.24 we observed the same gradual increase in average dy corresponding to a
gradual filling of the intermediate bins as when ou increases. But clusters sizes are bigger, as
observed by the fact that bins of higher d; are filled (figure 10a). This reflects the increase of
spatial range mentioned earlier. The d; = 1 bin stays almost empty, a fact related to islands
of resistance around non-adopting influential leaders.

e When Au = 0.47 nearly all samples are in the extremal bins when oJ start increasing, with
a gradual increase in the dy = 1 bin. But this effect stops when oJ ~ 1 and the distribution
get centered around the dy = 0.9 bin. Once more this is due to the existence of islands of
resistance around non-adopting influential leaders.

3.2.1 Lognormal distributions of influence

Gaussian distributions are commonly used in scientific papers for many ”good” reasons, such as
central limit theorem and the possibility of exact computations. Empirical data in economics
and social sciences often display different distributions. Using RICA/FADN data, we checked

123 more careful differentiation of equation 11 shows that the one eighth factor is a lower bound, valid in the
neighbourhood of symmetrical influences.

15
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Figure 10: Histograms of fractions of adopters dy at ”infinite” time as a function of width of
distribution oJ (y axis). Averages are taken from 500 samples. Initial densities are the same as
for figure 8. The bins along the x axis are the ten decimal intervals plus the two extremal discrete
bins corresponding to dy = 0 and df = 1. a) the upper histograms correspond to Au = 0.24; b)
the lower ones to Au = 0.47.



that income distribution for cattle breeders in central France obey a lognormal distribution and
tested by simulation the dynamics of adoption with these distributions of influences. This would
be a reasonable choice if influence were indeed strongly correlated with income. Since lognormal
distributions have more extreme samples than Gaussian distributions of equal standard deviation,
we expect even stronger impact of influential leaders. This is indeed observed in histograms (not
presented here).

e When Au = 0.24, bins of low d; are the most important: influential seeds favour initial
growth. But resistance to further growth appear due to island of resistance around influential
leaders.

e When Au = 0.47 the same relative increase in populations of bins of low dy with respect to
Gaussian distributions is observed.

Although lacking reliable empirical data for Au, we also tested lognormal distributions of Aw,
with results even closer to those obtained for gaussian distributions.

3.3 Random noise

We might also suppose that unknown and fluctuating phenomena change the value of AU: farmers
health problems, epidemics, annual weather fluctuations, political events. These events change the
perception of farmers and might make them take decisions that they would not have taken under
"normal” circumstances. In economic decision theory, these random processes are often taken into
account by using a ”logit” probabilistic decision function (Anderson et al(1993)), better known
to physicists as Maxwell-Boltzmann distribution. We have been using until now a deterministic
threshold function for choice: adopt when AU > 0. The logit function only provides a probability
of adoption. The farmer decision becomes a random variable with a probability to adopt:

1
1y exp(—BAU)

P(1) (12)
B can be considered as a rationality or confidence coefficient. Large values of 8 correspond to
probabilities close to one or zero except in the immediate neighbourhood of AU = 0; the model is
then close to our previous deterministic approach. On the other hand when S is small, intermediate
probability values are observed for a large range of AU; this is the case when the agents miss
information and are therefore less confident in the choice they make. Noise level is measured by
the inverse of 8 which is proportional to the width of the probability distribution (3/4 is the slope
of the probability distribution when AU = 0).

At equivalent levels, the effect of noise on fractions of adopters at infinite time is more dramatic
than the effect of frozen disorder since interfacial seeds have more occasions to appear and help
in further growth of clusters of adopters'?. Of course, for low noise level, large values of 3, they
take more time to appear and growth is slow. We report here two kinds of simulations, based on a
different interpretation of the notion of seed.

e Let us consider the initial seed as due to agents that have a large absolute utility Au > 1.
The seed will always remain at state 1, and all the neighbouring cells will transit to state 1
with probability one, sometimes. Total invasion can be predicted for the absolute utilities and
initial densities that we are using, and the only question is when: we are interested then in

13To be more specific, the utilities of the cells on the interface are sampled only once at the beginning of the
simulation in the case of frozen disorder, and at every time step in the case of random noise: hence the increase in
chances for adoption.
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Figure 11: Time for complete invasion of adopters versus random noise parameter 1/ for sticky
early adopters (see text). Continuous line corresponds to Au = 0.24, dotted line to Au = 0.47

times to reach total invasion. Simulation data on total invasion time are presented on figure
11.

e Let us suppose that the initial seed is made from agents that have chosen adoption the first
year, but that they are free to cancel their commitment after a given amount of time, say five
years as in the case of many AEM’s. In that case, if enough neighbours haven’t adopted (and
thus support the early adopters choices by increasing their AU) during this finite amount of
time, they will cancel their contract. Total invasion is certainly not ensured: simulation data
showing adoption fraction at infinite time are presented in figure 12. The very fast increase
of adoption fraction with random noise is due to the ratio in opportunities effect described
in the section on inhomogeneities in utilities.

The probabilistic approach above described is only one among possible approaches to uncer-
tainty, which might not be the most appropriate to the present case. It is not clear that adoption
decisions would be immediately taken on time fluctuations that are recognised as such by farm-
ers. Furthermore, most fluctuations are not symmetrical in their effects: epidemics e.g. favor non
adoption of AEMs for pesticides reduction, while drought and products price fluctuations (under
decreasing returns assumptions) probably work in the other direction with respect to set aside
and fertiliser reduction AEMs. The risk aversion approach, i.e. incorporating a bias term in the
absolute utilities, might better take into account farmers’ ”wisdom”. In conclusion, the inclusion of
probabilistic terms might make sense, but the uncertainty coefficient § is probably much higher (i.e.
uncertainty is much lower) than a direct evaluation of the time fluctuations of primary empirical
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Figure 12: Fraction of adopters at infinite time versus random noise parameter 1/8 for possibly
reversible early adopters. Early adopters can reverse their choice after five year if they have no
followers. Continuous line corresponds to Au = 0.24, dotted line to Au = 0.47
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Figure 13: Adoption fraction on random nets as a function of density of early adopters (x axis)
for threshold of 2 (AU = 0.51, dotted line) and for threshold of 3 (AU = 0.251, continuous line).
Each dot represents an average obtained with 500 samples.

data (weather, prices, yields) would indicate.

4 Random networks

As mentioned in the introduction, we have little knowledge of real social nets. A number of the
features that we observed could be related to our choice of a 2-d connection topology which is
probably much more regular than real social nets. To test what might remain of our observations
in more realistic implementations, we went to the other extreme and worked with random networks.
We chose nets with non-symmetric randomly established connections, constant connectivity k£ = 8
and N = 400 vertices for the sake of comparison with our previous simulations. Similar results
were obtained with average connectivities of 8. Because the connection structure of random nets is
closer to a tree than to low dimensional lattices, the size of the neighbourhood of a node increases
exponentially with the distance to the node. When growth occurs, invasion proceeds much faster
on random nets than on lattices, e.g. less than five time steps.'*. We first studied growth as a
function of density of early adopters and then the influence of inhomogeneities of utilities.

YFor a tree, growth time would be logN/log(k — 1)
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4.1 Minimal density of early adopters

Simulations done for conditions similar to those done for lattices (section 2.2) show the increase
of average adopters fraction as a function of the density of early adopters (see figure 13)!5 . They
correspond to either growth or no growth. They show more abrupt transitions than for 2d-lattices.
As mentioned above, this is because of the exponential increase of available vertices for growth in
random nets, to be compared with the corresponding linear increase in 2-d.

As for lattices, hopeful monsters also determine whether growth will occur in random nets,
but they are more difficult to represent. A simplified analytical approach will still give some
approximate prediction for critical initial densities n.. Let us establish the recursion relation
obeyed by the number of adopters S; at time ¢. For threshold 2, e.g. Au = 0.5, the M; agents who
adopt at time ¢, are those with at least 2 ”parents”: in other words, they need to have at least 2
input connections with earlier adopters which number is S;_;'6. In fact, earlier adopters can be
decomposed in those who adopted at time ¢ — 1, M; 1, and those who adopted at any time earlier
Si—2. A new adopter at time ¢ can either have 2 parents among M;_; or one in M;_; and one
in Sy o, but not 2 in S;_o, otherwise it would have been born earlier. By computing the average
number of connections to a pair of nodes chosen randomly in a set of a given size, we obtain:

(k- 1)(k — 2)N
2N?2

M, = (M2 | +2M; 1S; ») (13)

Where we have neglected any number of adopters with respect to the total number of agents, which
is valid at the beginning of the growth process. Noticing that the parenthesis is a difference of two
squares, the following recursion relation is then obtained for S;:

(k- 1)(k - 2)N
2N?2

Sy — Si1 = (S — S7) (14)

N disappears when we change from numbers of adopters S; to their density s, = S;/N.

EZVEZ2 e ) (15)

St — St—1 =

If we now suppose the existence of a critical density n. below which adoption cannot proceed by
lack of parents, s; should follow an exponential dynamics in the neighbourhood of n.:

Sp=ne*a” (16)

Using the above ansatz in the previous equation predicts the critical density when o = 1:

1

CENICE) (1n

Ne =

The same method for threshold 3 gives:

2
nc:\/(k—l)(k—Z)(k—?)) (18)

The above figures, and the predicted scaling, independence of N and dependence from k, are
confirmed by simulation results.

5For average rather than constant connectivities, the curves are slighly upward shifted
165, ;1 is the sum of all agents that adopted at time ¢t — 1 or earlier.
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4.2 Inhomogeneities in utilities

We checked that inhomogeneity in utilities also favour growth for random nets. Simulations done
for average Awu, and density of early adopters which would not allow growth for homogeneous
utilities display it when randomness is introduced, as observed in 2-d lattices, for the same reasons.
In comparison with 2-d lattices, the main difference is that intermediate bins of histograms are
flat for all values of Au,. All the information is then contained in the average fraction of adopters
displayed on figure 14 (simulations done for a gaussian distribution of utilities). This average value
corresponds to the fraction of initial configurations that allow full invasion. Once again, a large
dispersion of outcomes is observed for a large range of the disorder parameter ou.

4.3 Other simulations

We also made simulations to test the influence of inhomogeneities of influence and had results
which closely resembled those for 2d-lattices, with even less populated intermediate bins of the
histograms.

A number of simulations where also done for symmetrically connected random nets, which gave
essentially similar results to those obtained with asymmetric random nets.

5 Discussion and conclusions

The above simulations and computation give clear and simple results because we have chosen simple
connection structures. In real life, social networks have certainly a more intricate structure. The
question then arises about which dynamical features might be relevant and important for adoption
of agri-environmental measures in farmers communities. We will then first discuss the robustness
of the presented results in connection with models assumptions and then possible controls of the
adoption process by administrations in view of these results.

5.1 Models assumptions

The models are based on two main assumptions concerning 1, the individual decision process, 2,
the social network.

e All criteria that could influence farmers’ decisions, economic profit, work time, psychological
factors, even social influences are lumped into a single variable, utility. Such a simplification
might depress cognitivists coming from Artificial Intelligence but it is reasonably adapted
to our limited aims: we are interested in the decision and its consequences on adoption by
other agents, not in the actual decision process, of which very little is known. (Alternate
views, insisting on the importance of a finer description of the decision process are discussed
in Chattoe and Gilbert 1998). A real difficulty though, is the evaluation the utility function
as a sum of e.g. economic, psychological and time terms: if we use financial units, how do we
measure time and psychological assets? by salaries and contingent analysis? Even economic
profits are difficult to assess: adopting an AEM such as reduction of fertiliser input requires a
full readjustment of production. Differences in profits result from difference in income and in
inputs for different production conditions based on best agricultural practice (Lazzari 1998).

e In our view, the biggest issue is our ignorance about relevant social networks. Our knowledge
on social networks is pretty limited to a few ”cas d’ecole ” in sociology such as personal
networks, classroom friendship networks (see e.g. the Social network analysis web site), or
data from ethnology ( e.g. Levy-Strauss 1949); we don’t know much about social networks
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in Western world rural areas: a book edited by Darré (1994) gives a few examples. This is
one reason why the epidemiology metaphor is so commonly used. Furthermore, the relevant
network is probably not the same for decisions concerning domestic, economic or political
issues. Empirical data collected in relation to some specific issue might not be relevant for
other issues. Even decisions on adoption of proposed AEM could imply different connec-
tion structures according to the type of AEM. Consider e.g. local AEMs such Environment
Sensitive areas scheme in the UK, national AEMs such as input reduction or some special
AEMSs such as maintenance of local cattle races. Furthermore, social network often involve
loosely entangled sub-networks with tighter inner-connection as discussed in AIDS epidemics
(Hyman and Stanley 1988) or Florentine history (Padgett 1993). Anyway, we have seen that
the concepts we developed and the results we obtained on lattices are applicable, with careful
generalisation, to sparse random networks, i.e. with a number of influence connections per
agent larger than one on average, but much smaller than the total number of agents in the
network as we checked in the section on random nets 7.

5.2 Summary of the main results

The main result, which might appear as counter-intuitive to a decision maker or even to a statis-
tician, is the large dispersion of outcomes when randomness is introduced, for a wide range of
parameters: a global characterisation of randomness by a probability distribution is not sufficient
to predict uptakes, which can vary from 0 to 100 percent. This predicted dispersion could be a
"zero hypothesis” explaining the large uptake difference observed in apparently similar contexts:
for instance, large uptakes of AEM contracts have been observed in Lombardia and nearly no
uptakes in Piemonte, two neighbouring Italian provinces with apparently similar characteristics.
This sensitivity to the actual sampling of local variables is explained by the notions of clusters of
adopters and of “hopeful monsters”:

e Early adopters are those which would adopt even in the absence of neighbours.
e At any time, adoption occurs at the perimeter of clusters of adopters.

e The latter fact implies the necessity of hopeful monsters: initial configurations of neighbouring
adopters in number sufficient with respect to absolute utilities so that growth of adoption
clusters can proceed.

e A minimal utility, with a rather abrupt threshold of 0.25 in our model, is necessary to observe
cluster growth, but growth dynamics and even chances for growth at a given density of early
adopters depend on the magnitude of utilities well above the threshold.

i

e Randomness in utilities, influences and even external "noise ” always favour growth.

5.3 Control aspects

In terms of global policy, the ”financial” gains of the grant should be large enough to ensure
participation of enough ”early birds” (early adopters). Furthermore, if the funding agency aims at
having a large fraction of adopters in a reasonably short time scale, say three years, the financial
support and accompanying rules should be at a level well above the minimum level ensuring the
appearance of early birds. The agency is also facing some kind of an ”uncertainty principle ”:
ideally, the agency should be able to adjust the support level knowing the distribution of farmers

A counter-example would be the case when most agents are directly connected to each other.
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and social network characteristics, but we have observed that this is not the case because of the
strong dispersion of results for equivalent distributions. A much more thorough knowledge would
be necessary for actual optimisation of the agency financial effort. This dispersion is one more
reason for the agency to increase its support above optimality'® . A second approach is fine tuning,
which we discuss in the next paragraph.

There might indeed exist possibilities for local adjustments. Local agricultural advisers can
choose between a uniform campaigning effort, broadcasting and visiting all farmers equally, and a
selective schedule. Let us model the effect of the counselor on individual farmers by some extra
term in the utility function. Best results would be obtained if the counselor exerts his information
and persuasion effort on pivotal individuals. We can think of three kinds of pivotal individuals of
which two are evident:

e Those early adopters, whose utility is close to the threshold from below, and thus ready for
adoption, and who are also close enough in the social network to realise a hopeful monster
configuration.

e The influent leaders.

e The third type comprise dynamically influent farmers: when these agents are just outside
the adoption cluster, they are able to trigger the growth of another layer of adopters because
their interest for adoption Awu is large enough to allow them to adopt in the vicinity of the
interface, but not to be an early adopter.

We can then imagine a fine tuning and scheduling of the adviser effort which would consist in
visiting some of the pivotal agents, in the beginning of the program to convince possible early
birds, and candidates for interfacial seeds at those times where they are in the immediate vicinity
of the adoption cluster. Programming the effort should also take into account farmers influence on
their neighbours. Of course, this supposes a lot of knowledge about agents readiness to adopt and
actual social structure.

Rather that taking the full rationality view implied by such a thorough knowledge, we might
take the procedural rationality view: in the absence of a priori specific and thorough knowledge
could advisers devise simple and efficient ways to plan their visits and effort which would go
along the previous lines? Such would be the case for instance, if their schedule were based on
recommendations of previously visited farmers of whom to visit next. This scheme would follow the
influence links'? at the right time provided that the recommended person is visited after adoption
by the recommending person, i.e. just when he has a good chance to be on the edge of an adopting
cluster. This would be more efficient that both uniform and random effort. From the descriptive
approach, we can also survey the actual practices of advisers to check whether they use such
schemes, or others, which would be beneficial according to our theoretical predictions.
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25



Francois Véron for helpul discussions. This study has been carried out with financial support from
the Commission of the European Communities, Agriculture and Fisheries (FAIR) Specific RTD
programme, CT96-2092, ”Improving Agri-Environmental Policies : A Simulation Approach to the
Role of the Cognitive Properties of Farmers and Institutions”. It does not necessarily reflect its
views and in no way anticipates the Commission’s future policy in this area.

Bibliography

Anderson S. P.,; A. de Palma and J.F. Thisse (1993), Discrete Choice Theory of Product Dif-
ferentiation, Cambridge (MA): MIT Press.

Aoki M. (1996), A New Approach to Macroeconomic Modeling, New York: Cambridge University
Press.

Arthur, B.W. and D.A. Lane (1993), ”Information Contagion”, Structural Changes and Eco-
nomic Dynamics, 4, 81-104.

Chattoe, Edmund and Gilbert, Nigel (1997) ”Modelling the Adoption of Agri-EMs as an Innova-
tion Diffusion Process”, IMAGES Working Paper UOS-97-01, Department of Sociology, University
of Surrey, September.

Chattoe, Edmund and Gilbert, Nigel (1998) ”A Basic Simulation of Information Diffusion”,
IMAGES Working Paper UOS-98-01, Department of Sociology, University of Surrey, March.

Chattoe, Edmund and Gilbert, Nigel (1998) ”Modelling the Adoption of Agri-Environmental
Measures Using Decision Plan Nets”, IMAGES Working Paper UOS-98-02, Department of Sociol-
ogy, University of Surrey, May.

Darré J.P. (1994) “Pairs et experts dans I’agriculture - dialogues et production de connaissance
pour Paction”, TIP 1994, Eres. 11 rue des Alouattes 31520 Ramonville St Agne

F. Coquereau and J.A. Coquereau Réseaux de dialogues et utilisation des prairies. Etude
comparative dans deux communes du pays d’Auge, 31-48.

C. Albaladéjo Organisation sociotechniques locales: un potentiel de développement pour les
petites exploitations agricoles de la frontiére agraire de Missiones (Argentine), 171-202.

R. Le Guen, C. Ruault La double appartenance professionnelle des agriculteurs biologiques: Le
cas de l'agriculture biologique en Mayenne, 49-87.

Degenne A. and Forsé M. (1994) ”Les réseaux sociaux”, Armand Colin, Paris.
Farrell W. (1998), ”How hits happen”, HarperCollins, New York.

F6 llmer H. (1974) "Random Economies with Many Interacting Agents”, Journal of Mathemat-
ical Economics, 1/1, 51-62.

Galam S. (1997) “Rational group decision making: A random field Ising model at T=0", Physica
A, 238, 66-80.

26



Hyman J. M. and Stanley E. A.; (1988), ” Using Mathematical Models to Understand the AIDS
Epidemic”, Math. Biosci., 90 , 415-473.

Kirman A.P. (1993), ”Ants, Rationality and Recruitment”, Quarterly Journal of Economics,
108, 137-156

Kohring, G.A. (1996) “Ising models of social impact: the role of cumulative advantage”, J.
Phys. T, 6, 301.

Latané, B. and Nowak, A. (1997) “Self-Organizing Social Systems: Necessary and Sufficient
Conditions for the Emergence of Clustering, Consolidation and Continuing Diversity”, in Barnett,
G. A. and Boster, F. J. (eds.) Progress in Communication Sciences,

Lazzari, M (1998) Private discussions based on the following bibliography:

Poinelli M (1993) ”Valutazione della convenienza economica delle misure agroambientali in-
trodotte con la riforma PAC” Genio Rurale, n.7/8, 19-22, Bologna, IT

Greco L., Ragazzoni A. (1996) ” Regolamento Cee 2078/92: conviene aderire all’azione A17 ”
L’Informatore Agrario, n.26, 25-30, Verona, IT

Giardini L, Canterle A., Borin M., Berti A. (1997) ” Confronto tra sistemi colturali a scala
aziendale Nota I: valutazioni agronomiche ed economiche” Rivista di Agronomia, vol.31, n.3, 521-
530, Bologna, IT

Santucci F. (1996) ” Risultati economici di aziende biologiche in Umbria ” L’Informatore
Agrario, n.35, 27-30, Verona IT

Grigolo U., Salvatore G., Pino S., Marcolin P. (1997) ” Applicazione del regolamento Cee 2078
sui seminativi” L’informatore Agrario, n. 45, 35-43, Verona, IT

Muzzarelli F., Vannini L. (1992) ” L’intensivazione, I’estensivazione e la nuova PAC” L’Informatore
Agrario, n. 50, 25-28

Levy-Strauss C. (1949) ” Les structures élémentaires de la parenté”, PUF, Paris.

Moss S., Moss P.M.C. and Stauffer D. (1999) “Evolution, Money, War and Computers” Teubner
Verlag, Stuttgart and Leipzig.

Orléan A. (1995), ”Bayesian Interactions and Collective Dynamics of Opinions: Herd Behavior
and Mimetic Contagion”, Journal of Economic Behavior and Organization, 28, 257-274.

Padgett J. (1993), "Robust Action and the Rise of the Medici, 1400-1434”, American Journal
of Sociology , 98, 1259-1319.

Social network analysis http://eclectic.ss.uci.edu/lin/gallery.html
Vichniac G. (1986), “Cellular automata models of disorder and organization”, in “Disordered
Systems and biological organization”, eds. Bienenstock E., Fogelman-Soulié, F. and Weisbuch G.,

Springer Verlag Berlin.

Weisbuch G. (1990), Complex Systems Dynamics, Redwood City (CA): Addison Wesley.

27



Weisbuch G., Gutowitz H. and Duchateau-Nguyen G. (1996), Information contagion and the
economics of pollution, Journal of Economic Behavior and Organization, 29, 389-407.

28



