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1 Introdu
tion

The present study was motivated by the question of adoption of agri-environmental measures (to

be further noted AEM) by farmers in Europe. The European Union is presently proposing �nan
ial

help to farmers who a

ept to modify their agri
ultural pra
ti
es towards environmentally friendly

pra
ti
es su
h as input (fertilisers and pesti
ides) redu
tion, biologi
al farming, set-aside et
. In

pra
ti
e, at some lo
al level, farmers have to de
ide whether to a

ept a 
ontra
t implying some

�nan
ial help in ex
hange for the adoption of well de�ned agri
ultural pra
ti
es in their farm.

Su
h a reorientation of the Common Agri
ultural Poli
y from subsidies to produ
tion towards

environmentally friendly pra
ti
es involves a lot of 
hanges, equivalent in amplitude to those indu
ed

by the te
hni
al revolution for farming in the beginning of this 
entury or the green revolution in

the less developed 
ountries. We might expe
t that the present pro
ess will develop in time, hen
e

the idea to use a dynami
al approa
h similar to the one used in the study of te
hnologi
al 
hange.

In fa
t, most modeling of innovation di�usion is presently based on the ideas that:

� a new innovation is always bene�
ial;

� the rate of adoption of the innovation is limited by the propagation of information from

innovators to potential innovators (Degenne and Fors�e 1994)

1

.

The standard metaphor is then epidemiology, and innovation di�usion is treated as the propagation

of an epidemi
s through a sus
eptible population; individual "infe
tion" events are thus propor-

tional to a frequen
y of en
ounters between infe
ted and non-infe
ted individuals. In the 
ase of

random en
ounter a
ross the whole population, these hypotheses lead to a logisti
 equation and

the well-known S 
urve for adoption.

We will here depart from these standard hypotheses. A �rst variant from the hypothesis of

random en
ounter a
ross the whole population is to suppose the existen
e of a so
ial network :

"eÆ
ient" en
ounters only o

urs among 
onne
ted individuals (Degenne and Fors�e 1994). Some

studies use empiri
al networks to study buying patterns of teenagers for instan
e (Farrell 1998).

The absen
e of knowledge of a
tual patterns in most interesting situations lead resear
hers to work

�
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a more 
omplete bibliography 
an be found in Chattoe and Gilbert 1998
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on 2d spatial latti
es as models of so
ial networks (F�olmer 1974). One 
an think of three kind of

reasons to work with 2d spatial latti
es.

� Relevan
e: latti
es might be relevant to the 
ase when spa
e is the support of information

transmission: one 
an imagine for instan
e farmers observing a
tivities of their neighbours.

Another 
ase where spa
e plays role is when the di�usion of a 
hemi
al or biologi
al spe
ies

plays a role in "pro�ts" related to the adoption of the innovation. For instan
e pollution,

obviously related to the adoption of polluting te
hniques, propagates in spa
e (Weisbu
h et

al. 1996). The same relation is important between pests and the use of pesti
ides.

� Insight: 2d latti
es allow to easily visualize simulation results and gain some insight in the

important dynami
al pro
esses.

� Sear
h for generi
 properties: imitation phenomena often results in 
olle
tive behaviors with

well 
hara
terised dynami
al regimes and 
lear 
ut regime transitions when parameters are

varied. We will sear
h for these regimes and their transitions on 2-d latti
es, 
onje
turing that

these semi-quantitative properties are generi
 for a large 
lass of more 
omplex ar
hite
tures

(Weisbu
h 1990).

We will then start from the 2d latti
e metaphor, adding as a se
ond feature the relative use-

fulness of the innovation. We want to take into a

ount the fa
t that the innovation might not

be equally bene�
ial for all agents. Some agents might be in a position su
h that the innovation

is 
learly bene�
ial and they should adopt it as soon as they hear about it for instan
e, while

for others the extreme opposite is true: whatever other agents are doing, they should not adopt.

In between, other agents might de
ide upon the 
hoi
es made by their 
onne
ted neighbours. In

that respe
t, we are supposing that what makes sense to agents is what the others a
tually do;

information by itself is not suÆ
ient to make agents 
hange their minds.

We then suppose that farmer adoption de
ision is motivated by te
hni
al and e
onomi
al reasons

on the one hand, plus so
ial fa
tors whi
h in
lude the dynami
s of in
uen
es a
ross so
ial networks.

The purposes of the study are several.

� We �rst want to des
ribe and understand the dynami
s of adoption of AEM. But we are fa
ing

two diÆ
ulties: we la
k empiri
al data about the stru
tures of so
ial networks and about the

time series of adoptions. One purpose of our modeling is then to 
hara
terise features of

the dynami
s that are spe
i�
 of 
ertain dynami
al regimes, su
h as limits to adoption for

instan
e, or patterns. These emergent features observed on the simulated systems 
ould then

be 
ompared to stati
 empiri
al data.

� One 
an also take a normative approa
h: at a global level, poli
y makers have to 
hoose

the level of �nan
ial in
entives whi
h would result in some uptake of AEM by a population

of farmers. At the lo
al level, agri
ultural advisers have to s
hedule the allo
ation of their

information and persuasion e�ort among individual farmers. A better understanding of the

adoption dynami
s 
ould help the administration to better 
ontrol (in the sense of 
ontrol

theory) adoption, or at least to a
hieve a

eptable level of uptake.

We have presently built and 
he
ked models based on the following hypotheses:

- 2 dimensional models in the 
ase when adoption is not always bene�
ial, were studied by

analyti
al methods for equivalent agents, and by also using numeri
al simulations in the 
ase of

distribution of agents 
hara
teristi
s.

- For the purpose of 
omparison, we also studied randomly 
onne
ted networks: in our view,

the degree of stru
turation of so
ial networks is intermediate between these two extremes, and
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L x L  torus

Figure 1: Model geometry: Periodi
 boundary 
onne
tions are displayed on the left. The bla
k 
ell

in the middle of the right �gure re
eives input signals from its eight neighbours (the white 
ells).

properties 
ommon to both 2d latti
es and random nets have good 
han
es to be generi
, and thus

appli
able to so
ial nets.

For the 2d simulations, the most relevant metaphor is 2 dimensional 
rystal growth on surfa
es,

rather than epidemiology. We will then use here the standard Ising model of statisti
al physi
s.

Although �rst established to interprete ferromagnetism, this model and its variant are used in

physi
s to des
ribe all sorts of 
ooperative phenomena. Re
ent appli
ations to so
ial phenomena

are des
ribed in Galam (1997), Kohring (1996) and Moss de Olivera et al (1999)

2

.

We here dis
uss AEM adoption, but most of what we say applies as well to brand sele
tion,

te
hni
al 
hange or adoption of any isolated 
ultural trait.

2 Adoption dynami
s on a uniform 2d latti
e

We start with a geography of farms lying on a 
at-land at the nodes of a 2-D latti
e, ea
h farmer

being 
onne
ted to his neighbourhood (V ) for information ex
hange about adoption. To redu
e

boundary e�e
ts periodi
 boundary 
onne
tions have been 
hosen: the latti
e is displayed at the

surfa
e of a torus

3

.

Figure 1 displays the torus 
onstru
tion and the neighbourhood.

2

There exists an abundant literature in physi
s dis
ussing related phenomena at a formal level far above the

dis
ussions of the present paper. The above quoted papers and the book by Moss de Olivera et al (1999) are a good

introdu
tion to this literaure.
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One 
ould also assume stri
t borders with no 
onne
tions a
ross.
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At ea
h time step farmers

4

have the 
hoi
e to a

ept ( state 1) or to refuse the 
ontra
t (state

0)

5

a

ording to some estimated utility fun
tions

6

. We start from 'absolute utilities', or total

in
omes of the farm system, in the two 
ases when 
ontra
ts are a

epted (u

1

) or refused (u

0

).

In absen
e of neighbourhood, a "monadi
" farmer 
ould 
hoose the option with the highest

utility.

We propose to take into a

ount so
ial in
uen
e by adding a "so
ial" term to the absolute

utility fun
tion. The argument of the 
hoi
e fun
tion, di�eren
e of 'e�e
tive utilities' is:

�U = �u+ J(2f

1

� 1) (1)

where �u = u

1

� u

0

is the di�eren
e in absolute utilities, J is a s
ale 
oeÆ
ient, and f

1

2 [0; 1℄,

the proportion of 
hoi
es 1 of the neighbourhood is de�ned as:

f

1

=

v

1

(v

0

+ v

1

)

(2)

v

k

being the number of neighbours whi
h made 
hoi
e k

7

.

The additional "so
ial" term is interpreted in several ways in the standard literature on so
ial


hoi
e :

- One might 
onsider that several 
onne
ted innovators experien
e an in
rease in the utility of

innovation be
ause of dire
t intera
tions. For instan
e, in the 
ase information is ne
essary to the

use of the innovation, new innovators 
an share the information. The same argument also applies

to 
ommon struggle against pests or pollution.

- Another possible view, is to interpret the additional term as providing to an eventual adopter

some extra information about the interest of the innovation. If agents were purely rational and

knew exa
tly the possible advantages of innovation, they would de
ide a

ording to their own

appre
iation of utilities. Sin
e their knowledge about the innovation is imperfe
t, they might shift

their expe
tation of utilities a

ording to the 
hoi
e of their neighbours. The fa
tor J is a measure

of the in
uen
e of their neighbours' 
hoi
e with respe
t to their evaluation of utilities. The above

interpretation is 
ommonly used in the des
ription of fads and herd behaviour (F�ollmer 1974,

Arthur and Lane 1993, Kirman 1993, Orl�ean 1995). It is the one we have in mind in the present

paper.

From now on, we will refer to absolute utilities �u and to e�e
tive utilities �U in the rest of the

paper, although both quantities are a
tually di�eren
es between the utilities for di�erent 
hoi
es 1

or 0.

4

We are 
hoosing here parallel updating rather than sequential updating: all farmers are taking de
ision at ea
h

time step. The rationale for this 
hoi
e, simultaneity of de
ision, is that there exist a yearly deadline for grant

appli
ation, and that any imitation behavior is based on the observation of the 
hanges indu
ed by grant a

eptan
e,

or refusal, of neighbouring farmers. This is also 
onsistent with the fa
t that farming is a seasonal a
tivity; the

\natural" time step thus represents one year.

5

Although some AEMs allow a graded response from farmers, in the sense that they 
an a

ept the environmental

friendly poli
y on part of their farm, the present paper only dis
usses all or none de
isions, a

ept or reje
t for the

whole farm.

6

The wording does not imply that e
onomi
 fa
tors are the only ones taken into a

ount by farmers: the utilities


an also in
lude 
onsiderations about time, pleasure, state of the environment, psy
hologi
al fa
tors su
h as fame or

good relations with neighbourhood et
...

7

The J(2f

1

�1) term is a summation of 
ontribution of adopters, ea
h 
ontributing J=(v

0

+v

1

) and non-adopters,

ea
h 
ontributing �J=(v

0

+ v

1

).
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Figure 2: The �gures show the �rst 6 time steps of adoption dynami
s starting from a seed made of

two adopters (the 
entral pair of bla
k 
ells). Gray level 
ode time steps. The threshold for growth

is 2 adopting neighbours.

2.1 Deterministi
 homogeneous model

Let us �rst 
onsider the simple 
ase where all agents have the same di�eren
e in absolute utilities

�u. We also suppose that the 
hoi
e fun
tion of the agent is deterministi
: an agent takes the


hoi
e with the highest utility - i.e. 
hoi
e 1 when �U > 0, 
hoi
e 0 otherwise. The model is then

a simple 
ellular automaton of the 
ounter type ( see e.g. Vi
hnia
 1986

8

, Weisbu
h 1990): any


ell takes a state 0 or 1 a

ording to the number of its neighbours in state one. If this number is

larger than a threshold, it takes state 1, and otherwise state 0. The threshold depends on the ratio

between �u and J times the total number of neighbours.

Let us take a square latti
e, and a neighbourhood of 8. Let us assume without loss of generality

that J = 1. Equations 8 and 9 give as a 
ondition for innovation adoption:

�u+

v

1

4

> 1 (3)

When �u is larger than 1, growth of adoption o

urs in any 
ondition in one time step.

For 0:75 < �u � 1, the threshold is one neighbour adopting. Any seed at state 1 in a o
ean of

0 generates a 
luster whi
h grows to �ll the latti
e.

For 0:5 < �u � 0:75, the threshold is two neighbours. As seen on �gure 2 any seed of two

adopters distant by less than 2 grows to �ll the latti
e. Growth is fast, o

urs regularly and growing

domains have diamond shapes.

For 0:25 < �u � 0:5, the threshold is three neighbours. As the �gure 3 shows, several 
on-

�gurations of three initial adopters are able to grow and �ll the latti
e. But one type of "
orner"


on�guration has a very limited growth. Growth is slower and roughly isotropi
.

Figure 4 shows the variation of the fra
tion of adopters in time starting from a seed of 2 and 3


ontiguous adopters for thresholds of respe
tively two and three adopters. The latti
e size is 20x20.

Other simulations with larger latti
es give the same S shape. Chara
teristi
 times (e.g. at fra
tion

one half) s
ale in proportion of the linear size of the latti
e and the approximate one half ratio in

growth times between the two and three threshold 
onditions is maintained.

Four neighbours are ne
essary when 0 < �u � 0:25, but no initial 
on�guration of four neigh-

bours is able to grow and �ll the whole latti
e if isolated.

8

The paper by Vi
hnia
 is a good indrodu
tion to the 
ellular automaton approa
h to invasion
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Figure 3: The �gures show the �rst 16 time steps of adoption dynami
s starting from a seed made

of three adopters (the 
entered triplet of bla
k 
ells). Gray level 
ode time steps. The threshold

for growth is 3 a
tive neighbours. Note than one triplet is not a hopeful monster.
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Figure 4: Time (x axis) evolution of the fra
tion of adopters (y axis) in a 20x20 grid, starting

from a seed of two adopters for threshold of 2 (�U = 0:51, 
ontinuous line) and three adopters for

threshold of 3 (�u = 0:251, dotted line).
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Growth patterns from di�erent initial 
onditions of early adopters 
an also be monitored by

simulation (see �gures 2 and 3).

Symmetri
al 
omputations, with the possibility of growth of non-adopter regions in a "sea" of

adopters, 
an of 
ourse be done for negative values of �u.

2.2 Statisti
al approa
h to minimal density of initial adopters

If we start from a random distribution of initial adopters

9

, growth depends statisti
ally on their

initial density when 0 < �u � 0:75 as we 
an see in �gure 6 obtained by averaging simulation

10

results. For low initial densities, seeds made of several neighbouring adopters might not be present

in a �nite sample. In other words, the same initial density of early adopters might result in


ompletely di�erent out
omes, total invasion of adoption or no growth. As we dis
uss further, the

relevant parameter is not the average density, but its a
tual spatial distribution, and a
tually the

existen
e of "hopeful monsters"; furthermore average rate of adoptions might poorly 
hara
terise

the a
tual situation. In the present 
ase, we are observing an all or none out
ome and 
an dedu
e

the fra
tion of 0 or 1 out
ome from the average adoption 
urve. For the more 
ompli
ated 
ases that

we dis
uss in the next se
tion, one has to use histograms of of adoption rates for a large number

of simulation (�gure 9). At this stage, let us noti
e that we observe here a large dispersion of

results for random distributions with the same average 
hara
teristi
s, a typi
al feature of 
omplex

systems in the neighbourhood of 
riti
ality.

The 
omputation of the probability of hopeful monsters - those initial 
lusters of adopters

sus
eptible to invade the whole latti
e - is straightforward, but involves some deli
ate 
ombinatori
s.

Let us give the simplest example for the 
ase of threshold 2. Hopeful monsters are pairs of adopters

separated by a distan
e of at most 2 (�gure 5 on the left). Any early adopter has then a probability

p to have another spe
i�
 adopter as a neighbour whi
h is:

p = 24=N (4)

where 24 is the number of 
ells available as \useful" neighbours and N is the total number of latti
e

sites. If m early adopters are randomly generated in su

esssion, the probability P that none of

the m early adopter has any "useful" neighbour 
an be written

P = (1� p)(1� 2p)(1 � 3p)::::::(1 � (m� 1)p) (5)

sin
e the mth early adopter has a (m � 1)p probability to \land" in the vi
inity of another early

adopter already present on the latti
e. p being small, this probability P remains 
lose to one as long

as m is small. For large m values, P goes to zero exponentially. We 
an estimate the magnitude

of m su
h that P is intermediate by approximating 1 � ip by exp(�ip). The probability is then

written:

P = exp� (

p m (m� 1)

2

) (6)

9

We 
an think of initial adopters as ex
eptional agents whi
h �u is larger than one; another interpretation in

terms of poli
y or advertising, is that spe
ial e�orts have been applied by agri
ultural advisers or sales-persons to


onvin
e them to adopt.

10

The simulation 
omputer program is the dire
t translation of the model des
ribed in this paper. In general

adoption is "sti
ky": on
e a farmer has adopted, he remains an adopter. A variant from this rule was run, taking into

a

ount the fa
t that adopters only 
ommit for adoption for a period of �ve years. In fa
t, for deterministi
 version

of the program (i.e. ex
ept for se
tion 4.3), this makes negligible di�eren
e on growth. We use two versions of the

program. One version has a graphi
al on-line display allowing to visualise adoption kineti
s. Figures 2 and 3 were

generated from this version. The other version without graphi
al interfa
e, allows statisti
s and loops on parameters

values. Figures 6 to 11 were generated from this version.
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Figure 5: Hopeful monsters. The 
on�guration on the left represents the possible initial 
on�gu-

rations (seeds) of a hopeful monster when the threshold is 2 a
tive neighbours: one of them is the

bla
k 
ir
le and the white 
ir
les are all possible positions of the se
ond one ( the \destiny" of three

of these monsters are represented on �gure 2). The two other 
on�gurations, on the right, 
orre-

spond to a threshold of 3: white 
ir
les are all possible positions of the third a
tive site a

ording

to the relative positions of the �rst pair of a
tive sites represented in bla
k ( the \destiny" of three

of these monsters are represented on �gure 3).
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Figure 6: Probability (y axis) that all agents adopt at "in�nite" time as a fun
tion of density of early

adopters (x axis) for threshold of 2 (�U = 0:51, dotted line) and for threshold of 3 (�U = 0:251,


ontinuous line). Ea
h dot represents an average obtained with 500 samples.

Computing a 
hara
teristi
 m




su
h that the argument of the exponential is one gives

m




'

s

N

12

(7)

We used for simulations a 20x20 square latti
e. The predi
tion from expression 14, m




' 6 
orre-

sponding to a density of initial adopters n




' 0:015, is veri�ed by the numeri
al simulations.

3 Deterministi
 models with distributions of farmers 
hara
teris-

ti
s

We have no reason to assume that all agents share the same 
hara
teristi
s. After all, we have in

mind farmers whose in
ome, expenses and 
riteria of 
hoi
e vary largely.

We will model the variety of agents 
hara
teristi
s by introdu
ing some randomness in the

distribution of utilities and 
onne
tions of the agents. We will �rst deal with frozen disorder, i.e.

we suppose that some distribution of 
hara
teristi
s is 
hosen at the beginning of a simulation and

that all 
hosen parameters are kept 
onstant for the time of the simulation. Su
h models are then

deterministi
. We will refer to another sour
e of variation, random 
hange of agents parameters

with time as random noise, to be dis
ussed in the next se
tion, on probabilisti
 models.
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Figure 7: Interfa
ial growth from 
lusters. Numbers inside 
ir
les indi
ate times of adoption.

Growth from the 
entral square of 
ir
les (labeled 0) 
ould not o

ur if all thresholds were three,

but when a seed (labeled 1) with a lower threshold of two is present at the interfa
e it adopts at

time l. Adoption of others neighbours at later times indi
ated by the labels is then allowed by the

presen
e of the seed.

3.1 Inhomogeneities in utilities

Let us �rst study the in
uen
e of a distribution of di�erent �u among agents. We have 
hosen to

add to the average �u

a

, a random term drawn from a Gaussian distribution with a given width

�u. The random term is 
onstant in time.

A dire
t on-line examination of 
omputer simulations show that growth is favored by the random

terms in the region of intermediate average �u

a

. Initial 
lusters that would otherwise disappear or

be limited to small regular size have "seeds" on their periphery, due to agents with �u larger than

average. Interfa
ial growth 
an then pro
eed from these seeds. The pro
ess is illustrated on �gure

7. Depending upon the density of initial adopters and the spread of the distribution of �u, growth


an �ll most of the latti
e or remain limited to only a fra
tion of it. Averaged statisti
s taken for

500 samples are presented in �gure 8; they show the in
rease of the �nal fra
tion of adopters d

f

with the magnitude of the random terms in 
onditions when average �u and initial densities n

would not permit growth without these random terms (for the sake of 
omparison, the same pairs

of average �u and initial densities n, 0.24, 0.05 and 0.48 , 0.01 are used in the following simulations

�gures 8, 9, 10, 11 and 12).

In fa
t, as earlier mentioned, these 
urves averaged over many simulations only give partial

information: an average of d

f

= 0:5 
ould 
orrespond to half densities being 0 and half being 1

(perfe
t bimodality), or to the opposite 
ase of a distribution uniform on [0,1℄. We investigated the

issue by plotting the 
orresponding histograms of d

f

for points represented in �gure 8 and found

that intermediate values of the average �nal densities 
an 
orrespond to very di�erent distributions

as observed on histograms represented in �gure 9.

The bins for the histograms were the ten de
imal intervals plus the two extremal dis
rete

bins 
orresponding to d

f

= 0 and d

f

= 1. On
e more, the most striking feature to observe is

the dispersion of results for equivalent randomness distributions. The distribution of utilities is

insuÆ
ient to predi
t the out
ome of the imitation pro
ess; for this purpose one would have to

know the pre
ise spatial distribution.
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Figure 8: Average fra
tions of adopters at "in�nite" time as a fun
tion of width of distribution

�u (x axis). Averages are taken from 500 samples. For average �

a

u = 0:24 (dotted line), initial

densities of adopters are n = 0:05 and for �u

a

= 0:48 (
ontinuous line), n = 0:01 .
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Figure 9: Histograms of fra
tions of adopters d

f

at "in�nite" time as a fun
tion of width of

distribution �u (y axis). Averages are taken from 500 samples. Initial densities are the same as

for �gure 8. The bins along the x axis are the ten de
imal intervals plus the two extremal dis
rete

bins 
orresponding to d

f

= 0 and d

f

= 1. a) the upper histograms 
orrespond to �u

a

= 0:24; b)

the lower ones to �u

a

= 0:47.
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� When �u

a

= 0:24 the gradual in
rease in average d

f


orresponds to a gradual �lling of the

intermediate bins when �u in
reases and rea
hes a magnitude 
omparable to �u

a

(�gure

9a). As 
he
ked by dire
t examination of adoption dynami
s, the disorder in utilities allows

interfa
ial growth and appearan
e of big 
lusters of adopters; but this pro
ess most often

stops before �lling the whole latti
e.

� But when �u

a

= 0:47 nearly all samples are in the extremal bins, whi
h implies that whenever

growth starts it invades the whole latti
e. The total invasion pro
ess is of 
ourse favored by

large values of �u.

The online observations explains the phenomenon. �u

a

= 0:48 is 
lose to a threshold for growth

of two neighbours (0.5). All the 
ells on the periphery of a 
luster are then \
andidate" interfa
ial

seeds for surfa
e growth sin
e they already have two adopting neighbours. They are "a
tual" seeds

when their �u is larger than 0.5. Let us 
onsider the 
on�gurations of hopeful monsters of �gure 5


orresponding to a seed of 2. In the 
ase of a diagonal pair of neighbours for instan
e, the number

of possible interfa
ial seeds (opportunities) are s1 = 2 at the �rst step and s2 = 8 at the se
ond

step

11

(�gure 2 is an illustration of the situation from the se
ond step on) . Averaging over all 24

hopeful monsters we get 1.66 opportunities for the �rst step and 6.33 for the se
ond step. We 
an


ompute the probability � of �lling a site with two o

upied neighbours.

� = 1� erf(

0:02

�u

) = 1� q: (8)

Where q is the probability that the site stays empty and erf is the error fun
tion. The argument of

the error fun
tion represent the probability that the random term is smaller than 0.02, the quantity

needed to 
omplement �u to 0.5, thus allowing adoption. The probability P1 that at least one site

among s1 opportunities at the �rst step is an a
tual interfa
ial seed is then:

P1 = 1� q

s1

: (9)

The probability P2 that any site among s2 opportunities at the se
ond step is a
tual interfa
ial

seed is then:

P2 = 1� q

s2

: (10)

These expressions show that when �u is large enough to give a non negligible probability of adoption

at the �rst step, the 
han
es are high that the pro
ess 
arries on to the se
ond step whi
h o�ers

nearly four times more opportunities. For instan
e when P1 = 0:3, the above expressions give

P2 = 0:75. Chan
es 
arry on in
reasing at further steps, hen
e the observation that if growth

starts, its ends by �lling the latti
e (�gure 9b).

On the opposite, �u

a

= 0:24 is 
lose to a threshold for growth of three neighbours (0.25).

Only the re-entrant 
orners or lines of at least three adopters, are then possible seeds for surfa
e

growth. Computation of opportunities at the �rst two steps on the hopeful monsters give a ratio

of opportunities of two between the se
ond and the �rst step. This slower in
rease in opportunities

is also observed at further steps. Initial growth does not then guarantee that the whole latti
e will

be invaded. Finite size 
lusters remain at large times, and intermediate d

f

bins are observed in the

histograms (�gure 9a).

11

The 
orresponding �gures are 4 and 8 for a horizontal pair of neighbours, 1 and 6 horizontal pair of next nearest

neighbours, 1 and 4 for diagonal pair of next nearest neighbours and 1 and 5 for the remaining 
ase.
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3.2 Inhomogeneities of in
uen
e

We might expe
t the 
onne
tion stru
ture and intensities to vary between neighbours. One 
an then

think of a random, non-symmetri
al, matrix of 
onne
tions among neighbours. We have 
hosen

a slightly more regular stru
ture whi
h takes into a

ount the ideas of in
uen
e and in
uential

leaders. We suppose that some agents be
ause of their so
ial status, supposed wisdom, or more

simply be
ause of their wealth, are more in
uential than others (see for instan
e Latane and Nowak

(1997)). The so
ial term of equation (8) in
uen
ing agent i is then generalised to:

P

j

J

j

S

j

P

j

J

j

(11)

where J

j

is the so
ial in
uen
e of agent j and S

j

is a state variable whi
h takes value + 1 for 
hoi
e

1 (adopt) and -1 for 
hoi
e 0 (non-adoption). Simulations were done for Gaussian distributions of

in
uen
e with width �J . Average J were 1. On
e more, for statisti
al purposes, 500 samples were

taken for ea
h set of parameters. We again observed a lot of dispersion in the adoption fra
tion for

equivalent distributions of randomness.

To 
ompare the results with those of the previous se
tion (width in �u), we have to �gure out

the 
hange in J whi
h produ
es the same e�e
t on an agent i, via 
hanges in e�e
tive utilities

�U , as a 
hange in absolute utilities �u. Sin
e agent i is in
uen
ed by eight neighbours, the

e�e
tiveness of 
hanges in J are roughly

12

in a ratio one eighth with 
hanges in �u. We have then


hosen to s
ale up by a fa
tor 8 the �J simulation parameter with respe
t to previous simulation

in �u. On the other hand, sin
e agent j a
ts on eight neighbours, the spatial range of the e�e
ts

of in
uen
e in
rease is mu
h larger than when absolute utility is in
reased, whi
h we observed in

the simulations.

Simulations show that the main di�eren
e between the e�e
t of randomness in J with respe
t

to randomness in �u is the appearan
e of islands of resistan
e to adoption organised around

in
uential leaders (whi
h 
an o

ur either as strong individual leaders or even small 
lusters of self

re-enfor
ing but not ne
essarily very strong leaders). In 
ontrast a strong deviation in �u 
an only

lead to isolated resistant individuals, unless of 
ourse there exists some spatial 
orrelation in the

distribution of absolute utilities, a feature not studied in our simulations.

� When �u = 0:24 we observed the same gradual in
rease in average d

f


orresponding to a

gradual �lling of the intermediate bins as when �u in
reases. But 
lusters sizes are bigger, as

observed by the fa
t that bins of higher d

f

are �lled (�gure 10a). This re
e
ts the in
rease of

spatial range mentioned earlier. The d

f

= 1 bin stays almost empty, a fa
t related to islands

of resistan
e around non-adopting in
uential leaders.

� When �u = 0:47 nearly all samples are in the extremal bins when �J start in
reasing, with

a gradual in
rease in the d

f

= 1 bin. But this e�e
t stops when �J ' 1 and the distribution

get 
entered around the d

f

= 0:9 bin. On
e more this is due to the existen
e of islands of

resistan
e around non-adopting in
uential leaders.

3.2.1 Lognormal distributions of in
uen
e

Gaussian distributions are 
ommonly used in s
ienti�
 papers for many "good" reasons, su
h as


entral limit theorem and the possibility of exa
t 
omputations. Empiri
al data in e
onomi
s

and so
ial s
ien
es often display di�erent distributions. Using RICA/FADN data, we 
he
ked

12

a more 
areful di�erentiation of equation 11 shows that the one eighth fa
tor is a lower bound, valid in the

neighbourhood of symmetri
al in
uen
es.
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Figure 10: Histograms of fra
tions of adopters d

f

at "in�nite" time as a fun
tion of width of

distribution �J (y axis). Averages are taken from 500 samples. Initial densities are the same as

for �gure 8. The bins along the x axis are the ten de
imal intervals plus the two extremal dis
rete

bins 
orresponding to d

f

= 0 and d

f

= 1. a) the upper histograms 
orrespond to �u = 0:24; b)

the lower ones to �u = 0:47.
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that in
ome distribution for 
attle breeders in 
entral Fran
e obey a lognormal distribution and

tested by simulation the dynami
s of adoption with these distributions of in
uen
es. This would

be a reasonable 
hoi
e if in
uen
e were indeed strongly 
orrelated with in
ome. Sin
e lognormal

distributions have more extreme samples than Gaussian distributions of equal standard deviation,

we expe
t even stronger impa
t of in
uential leaders. This is indeed observed in histograms (not

presented here).

� When �u = 0:24, bins of low d

f

are the most important: in
uential seeds favour initial

growth. But resistan
e to further growth appear due to island of resistan
e around in
uential

leaders.

� When �u = 0:47 the same relative in
rease in populations of bins of low d

f

with respe
t to

Gaussian distributions is observed.

Although la
king reliable empiri
al data for �u, we also tested lognormal distributions of �u,

with results even 
loser to those obtained for gaussian distributions.

3.3 Random noise

We might also suppose that unknown and 
u
tuating phenomena 
hange the value of �U : farmers

health problems, epidemi
s, annual weather 
u
tuations, politi
al events. These events 
hange the

per
eption of farmers and might make them take de
isions that they would not have taken under

"normal" 
ir
umstan
es. In e
onomi
 de
ision theory, these random pro
esses are often taken into

a

ount by using a "logit" probabilisti
 de
ision fun
tion (Anderson et al(1993)), better known

to physi
ists as Maxwell-Boltzmann distribution. We have been using until now a deterministi


threshold fun
tion for 
hoi
e: adopt when �U > 0. The logit fun
tion only provides a probability

of adoption. The farmer de
ision be
omes a random variable with a probability to adopt:

P (1) =

1

1 + exp(���U)

(12)

� 
an be 
onsidered as a rationality or 
on�den
e 
oeÆ
ient. Large values of � 
orrespond to

probabilities 
lose to one or zero ex
ept in the immediate neighbourhood of �U = 0; the model is

then 
lose to our previous deterministi
 approa
h. On the other hand when � is small, intermediate

probability values are observed for a large range of �U ; this is the 
ase when the agents miss

information and are therefore less 
on�dent in the 
hoi
e they make. Noise level is measured by

the inverse of � whi
h is proportional to the width of the probability distribution (�=4 is the slope

of the probability distribution when �U = 0).

At equivalent levels, the e�e
t of noise on fra
tions of adopters at in�nite time is more dramati


than the e�e
t of frozen disorder sin
e interfa
ial seeds have more o

asions to appear and help

in further growth of 
lusters of adopters

13

. Of 
ourse, for low noise level, large values of �, they

take more time to appear and growth is slow. We report here two kinds of simulations, based on a

di�erent interpretation of the notion of seed.

� Let us 
onsider the initial seed as due to agents that have a large absolute utility �u > 1.

The seed will always remain at state 1, and all the neighbouring 
ells will transit to state 1

with probability one, sometimes. Total invasion 
an be predi
ted for the absolute utilities and

initial densities that we are using, and the only question is when: we are interested then in

13

To be more spe
i�
, the utilities of the 
ells on the interfa
e are sampled only on
e at the beginning of the

simulation in the 
ase of frozen disorder, and at every time step in the 
ase of random noise: hen
e the in
rease in


han
es for adoption.
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Figure 11: Time for 
omplete invasion of adopters versus random noise parameter 1=� for sti
ky

early adopters (see text). Continuous line 
orresponds to �u = 0:24, dotted line to �u = 0:47

times to rea
h total invasion. Simulation data on total invasion time are presented on �gure

11.

� Let us suppose that the initial seed is made from agents that have 
hosen adoption the �rst

year, but that they are free to 
an
el their 
ommitment after a given amount of time, say �ve

years as in the 
ase of many AEM's. In that 
ase, if enough neighbours haven't adopted (and

thus support the early adopters 
hoi
es by in
reasing their �U) during this �nite amount of

time, they will 
an
el their 
ontra
t. Total invasion is 
ertainly not ensured: simulation data

showing adoption fra
tion at in�nite time are presented in �gure 12. The very fast in
rease

of adoption fra
tion with random noise is due to the ratio in opportunities e�e
t des
ribed

in the se
tion on inhomogeneities in utilities.

The probabilisti
 approa
h above des
ribed is only one among possible approa
hes to un
er-

tainty, whi
h might not be the most appropriate to the present 
ase. It is not 
lear that adoption

de
isions would be immediately taken on time 
u
tuations that are re
ognised as su
h by farm-

ers. Furthermore, most 
u
tuations are not symmetri
al in their e�e
ts: epidemi
s e.g. favor non

adoption of AEMs for pesti
ides redu
tion, while drought and produ
ts pri
e 
u
tuations (under

de
reasing returns assumptions) probably work in the other dire
tion with respe
t to set aside

and fertiliser redu
tion AEMs. The risk aversion approa
h, i.e. in
orporating a bias term in the

absolute utilities, might better take into a

ount farmers' "wisdom". In 
on
lusion, the in
lusion of

probabilisti
 terms might make sense, but the un
ertainty 
oeÆ
ient � is probably mu
h higher (i.e.

un
ertainty is mu
h lower) than a dire
t evaluation of the time 
u
tuations of primary empiri
al

18
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Figure 12: Fra
tion of adopters at in�nite time versus random noise parameter 1=� for possibly

reversible early adopters. Early adopters 
an reverse their 
hoi
e after �ve year if they have no

followers. Continuous line 
orresponds to �u = 0:24, dotted line to �u = 0:47
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Figure 13: Adoption fra
tion on random nets as a fun
tion of density of early adopters (x axis)

for threshold of 2 (�U = 0:51, dotted line) and for threshold of 3 (�U = 0:251, 
ontinuous line).

Ea
h dot represents an average obtained with 500 samples.

data (weather, pri
es, yields) would indi
ate.

4 Random networks

As mentioned in the introdu
tion, we have little knowledge of real so
ial nets. A number of the

features that we observed 
ould be related to our 
hoi
e of a 2-d 
onne
tion topology whi
h is

probably mu
h more regular than real so
ial nets. To test what might remain of our observations

in more realisti
 implementations, we went to the other extreme and worked with random networks.

We 
hose nets with non-symmetri
 randomly established 
onne
tions, 
onstant 
onne
tivity k = 8

and N = 400 verti
es for the sake of 
omparison with our previous simulations. Similar results

were obtained with average 
onne
tivities of 8. Be
ause the 
onne
tion stru
ture of random nets is


loser to a tree than to low dimensional latti
es, the size of the neighbourhood of a node in
reases

exponentially with the distan
e to the node. When growth o

urs, invasion pro
eeds mu
h faster

on random nets than on latti
es, e.g. less than �ve time steps.

14

. We �rst studied growth as a

fun
tion of density of early adopters and then the in
uen
e of inhomogeneities of utilities.

14

For a tree, growth time would be logN=log(k � 1)
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4.1 Minimal density of early adopters

Simulations done for 
onditions similar to those done for latti
es (se
tion 2.2) show the in
rease

of average adopters fra
tion as a fun
tion of the density of early adopters (see �gure 13)

15

. They


orrespond to either growth or no growth. They show more abrupt transitions than for 2d-latti
es.

As mentioned above, this is be
ause of the exponential in
rease of available verti
es for growth in

random nets, to be 
ompared with the 
orresponding linear in
rease in 2-d.

As for latti
es, hopeful monsters also determine whether growth will o

ur in random nets,

but they are more diÆ
ult to represent. A simpli�ed analyti
al approa
h will still give some

approximate predi
tion for 
riti
al initial densities n




. Let us establish the re
ursion relation

obeyed by the number of adopters S

t

at time t. For threshold 2, e.g. �u = 0:5, the M

t

agents who

adopt at time t, are those with at least 2 "parents": in other words, they need to have at least 2

input 
onne
tions with earlier adopters whi
h number is S

t�1

16

. In fa
t, earlier adopters 
an be

de
omposed in those who adopted at time t� 1, M

t�1

, and those who adopted at any time earlier

S

t�2

. A new adopter at time t 
an either have 2 parents among M

t�1

or one in M

t�1

and one

in S

t�2

, but not 2 in S

t�2

, otherwise it would have been born earlier. By 
omputing the average

number of 
onne
tions to a pair of nodes 
hosen randomly in a set of a given size, we obtain:

M

t

=

(k � 1)(k � 2)N

2N

2

(M

2

t�1

+ 2M

t�1

S

t�2

) (13)

Where we have negle
ted any number of adopters with respe
t to the total number of agents, whi
h

is valid at the beginning of the growth pro
ess. Noti
ing that the parenthesis is a di�eren
e of two

squares, the following re
ursion relation is then obtained for S

t

:

S

t

� S

t�1

=

(k � 1)(k � 2)N

2N

2

(S

2

t�1

� S

2

t�2

) (14)

N disappears when we 
hange from numbers of adopters S

t

to their density s

t

= S

t

=N .

s

t

� s

t�1

=

(k � 1)(k � 2)

2

(s

2

t�1

� s

2

t�2

) (15)

If we now suppose the existen
e of a 
riti
al density n




below whi
h adoption 
annot pro
eed by

la
k of parents, s

t

should follow an exponential dynami
s in the neighbourhood of n




:

s

n

= n




� �

n

(16)

Using the above ansatz in the previous equation predi
ts the 
riti
al density when � = 1:

n




=

1

(k � 1)(k � 2)

(17)

The same method for threshold 3 gives:

n




=

s

2

(k � 1)(k � 2)(k � 3)

(18)

The above �gures, and the predi
ted s
aling, independen
e of N and dependen
e from k, are


on�rmed by simulation results.

15

For average rather than 
onstant 
onne
tivities, the 
urves are slighly upward shifted

16

S

t�1

is the sum of all agents that adopted at time t� 1 or earlier.
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Figure 14: Average fra
tions of adopters at "in�nite" time as a fun
tion of width of distribution

�u (x axis) for random networks. Averages are taken from 500 samples. For average �

a

u = 0:24

(dotted line), initial densities of adopters are n = 0:1 and for �u

a

= 0:47 (
ontinuous line), n = 0:02

.
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4.2 Inhomogeneities in utilities

We 
he
ked that inhomogeneity in utilities also favour growth for random nets. Simulations done

for average �u

a

and density of early adopters whi
h would not allow growth for homogeneous

utilities display it when randomness is introdu
ed, as observed in 2-d latti
es, for the same reasons.

In 
omparison with 2-d latti
es, the main di�eren
e is that intermediate bins of histograms are


at for all values of �u

a

. All the information is then 
ontained in the average fra
tion of adopters

displayed on �gure 14 (simulations done for a gaussian distribution of utilities). This average value


orresponds to the fra
tion of initial 
on�gurations that allow full invasion. On
e again, a large

dispersion of out
omes is observed for a large range of the disorder parameter �u.

4.3 Other simulations

We also made simulations to test the in
uen
e of inhomogeneities of in
uen
e and had results

whi
h 
losely resembled those for 2d-latti
es, with even less populated intermediate bins of the

histograms.

A number of simulations where also done for symmetri
ally 
onne
ted random nets, whi
h gave

essentially similar results to those obtained with asymmetri
 random nets.

5 Dis
ussion and 
on
lusions

The above simulations and 
omputation give 
lear and simple results be
ause we have 
hosen simple


onne
tion stru
tures. In real life, so
ial networks have 
ertainly a more intri
ate stru
ture. The

question then arises about whi
h dynami
al features might be relevant and important for adoption

of agri-environmental measures in farmers 
ommunities. We will then �rst dis
uss the robustness

of the presented results in 
onne
tion with models assumptions and then possible 
ontrols of the

adoption pro
ess by administrations in view of these results.

5.1 Models assumptions

The models are based on two main assumptions 
on
erning 1, the individual de
ision pro
ess, 2,

the so
ial network.

� All 
riteria that 
ould in
uen
e farmers' de
isions, e
onomi
 pro�t, work time, psy
hologi
al

fa
tors, even so
ial in
uen
es are lumped into a single variable, utility. Su
h a simpli�
ation

might depress 
ognitivists 
oming from Arti�
ial Intelligen
e but it is reasonably adapted

to our limited aims: we are interested in the de
ision and its 
onsequen
es on adoption by

other agents, not in the a
tual de
ision pro
ess, of whi
h very little is known. (Alternate

views, insisting on the importan
e of a �ner des
ription of the de
ision pro
ess are dis
ussed

in Chattoe and Gilbert 1998). A real diÆ
ulty though, is the evaluation the utility fun
tion

as a sum of e.g. e
onomi
, psy
hologi
al and time terms: if we use �nan
ial units, how do we

measure time and psy
hologi
al assets? by salaries and 
ontingent analysis? Even e
onomi


pro�ts are diÆ
ult to assess: adopting an AEM su
h as redu
tion of fertiliser input requires a

full readjustment of produ
tion. Di�eren
es in pro�ts result from di�eren
e in in
ome and in

inputs for di�erent produ
tion 
onditions based on best agri
ultural pra
ti
e (Lazzari 1998).

� In our view, the biggest issue is our ignoran
e about relevant so
ial networks. Our knowledge

on so
ial networks is pretty limited to a few "
as d'e
ole " in so
iology su
h as personal

networks, 
lassroom friendship networks (see e.g. the So
ial network analysis web site), or

data from ethnology ( e.g. Levy-Strauss 1949); we don't know mu
h about so
ial networks
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in Western world rural areas: a book edited by Darr�e (1994) gives a few examples. This is

one reason why the epidemiology metaphor is so 
ommonly used. Furthermore, the relevant

network is probably not the same for de
isions 
on
erning domesti
, e
onomi
 or politi
al

issues. Empiri
al data 
olle
ted in relation to some spe
i�
 issue might not be relevant for

other issues. Even de
isions on adoption of proposed AEM 
ould imply di�erent 
onne
-

tion stru
tures a

ording to the type of AEM. Consider e.g. lo
al AEMs su
h Environment

Sensitive areas s
heme in the UK, national AEMs su
h as input redu
tion or some spe
ial

AEMs su
h as maintenan
e of lo
al 
attle ra
es. Furthermore, so
ial network often involve

loosely entangled sub-networks with tighter inner-
onne
tion as dis
ussed in AIDS epidemi
s

(Hyman and Stanley 1988) or Florentine history (Padgett 1993). Anyway, we have seen that

the 
on
epts we developed and the results we obtained on latti
es are appli
able, with 
areful

generalisation, to sparse random networks, i.e. with a number of in
uen
e 
onne
tions per

agent larger than one on average, but mu
h smaller than the total number of agents in the

network as we 
he
ked in the se
tion on random nets

17

.

5.2 Summary of the main results

The main result, whi
h might appear as 
ounter-intuitive to a de
ision maker or even to a statis-

ti
ian, is the large dispersion of out
omes when randomness is introdu
ed, for a wide range of

parameters: a global 
hara
terisation of randomness by a probability distribution is not suÆ
ient

to predi
t uptakes, whi
h 
an vary from 0 to 100 per
ent. This predi
ted dispersion 
ould be a

"zero hypothesis" explaining the large uptake di�eren
e observed in apparently similar 
ontexts:

for instan
e, large uptakes of AEM 
ontra
ts have been observed in Lombardia and nearly no

uptakes in Piemonte, two neighbouring Italian provin
es with apparently similar 
hara
teristi
s.

This sensitivity to the a
tual sampling of lo
al variables is explained by the notions of 
lusters of

adopters and of \hopeful monsters":

� Early adopters are those whi
h would adopt even in the absen
e of neighbours.

� At any time, adoption o

urs at the perimeter of 
lusters of adopters.

� The latter fa
t implies the ne
essity of hopeful monsters: initial 
on�gurations of neighbouring

adopters in number suÆ
ient with respe
t to absolute utilities so that growth of adoption


lusters 
an pro
eed.

� A minimal utility, with a rather abrupt threshold of 0.25 in our model, is ne
essary to observe


luster growth, but growth dynami
s and even 
han
es for growth at a given density of early

adopters depend on the magnitude of utilities well above the threshold.

� Randomness in utilities, in
uen
es and even external "noise " always favour growth.

5.3 Control aspe
ts

In terms of global poli
y, the "�nan
ial" gains of the grant should be large enough to ensure

parti
ipation of enough "early birds" (early adopters). Furthermore, if the funding agen
y aims at

having a large fra
tion of adopters in a reasonably short time s
ale, say three years, the �nan
ial

support and a

ompanying rules should be at a level well above the minimum level ensuring the

appearan
e of early birds. The agen
y is also fa
ing some kind of an "un
ertainty prin
iple ":

ideally, the agen
y should be able to adjust the support level knowing the distribution of farmers

17

A 
ounter-example would be the 
ase when most agents are dire
tly 
onne
ted to ea
h other.
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and so
ial network 
hara
teristi
s, but we have observed that this is not the 
ase be
ause of the

strong dispersion of results for equivalent distributions. A mu
h more thorough knowledge would

be ne
essary for a
tual optimisation of the agen
y �nan
ial e�ort. This dispersion is one more

reason for the agen
y to in
rease its support above optimality

18

. A se
ond approa
h is �ne tuning,

whi
h we dis
uss in the next paragraph.

There might indeed exist possibilities for lo
al adjustments. Lo
al agri
ultural advisers 
an


hoose between a uniform 
ampaigning e�ort, broad
asting and visiting all farmers equally, and a

sele
tive s
hedule. Let us model the e�e
t of the 
ounselor on individual farmers by some extra

term in the utility fun
tion. Best results would be obtained if the 
ounselor exerts his information

and persuasion e�ort on pivotal individuals. We 
an think of three kinds of pivotal individuals of

whi
h two are evident:

� Those early adopters, whose utility is 
lose to the threshold from below, and thus ready for

adoption, and who are also 
lose enough in the so
ial network to realise a hopeful monster


on�guration.

� The in
uent leaders.

� The third type 
omprise dynami
ally in
uent farmers: when these agents are just outside

the adoption 
luster, they are able to trigger the growth of another layer of adopters be
ause

their interest for adoption �u is large enough to allow them to adopt in the vi
inity of the

interfa
e, but not to be an early adopter.

We 
an then imagine a �ne tuning and s
heduling of the adviser e�ort whi
h would 
onsist in

visiting some of the pivotal agents, in the beginning of the program to 
onvin
e possible early

birds, and 
andidates for interfa
ial seeds at those times where they are in the immediate vi
inity

of the adoption 
luster. Programming the e�ort should also take into a

ount farmers in
uen
e on

their neighbours. Of 
ourse, this supposes a lot of knowledge about agents readiness to adopt and

a
tual so
ial stru
ture.

Rather that taking the full rationality view implied by su
h a thorough knowledge, we might

take the pro
edural rationality view: in the absen
e of a priori spe
i�
 and thorough knowledge


ould advisers devise simple and eÆ
ient ways to plan their visits and e�ort whi
h would go

along the previous lines? Su
h would be the 
ase for instan
e, if their s
hedule were based on

re
ommendations of previously visited farmers of whom to visit next. This s
heme would follow the

in
uen
e links

19

at the right time provided that the re
ommended person is visited after adoption

by the re
ommending person, i.e. just when he has a good 
han
e to be on the edge of an adopting


luster. This would be more eÆ
ient that both uniform and random e�ort. From the des
riptive

approa
h, we 
an also survey the a
tual pra
ti
es of advisers to 
he
k whether they use su
h

s
hemes, or others, whi
h would be bene�
ial a

ording to our theoreti
al predi
tions.
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Rather than aiming at average results, a politi
al institution is risk averse and has to avoid the probability of

bad results; when the results of a poli
y 
an be expe
ted to have a large dispersion, the agen
y has to aim higher

19

with the restri
tion that in
uen
es might not be re
ipro
al.
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