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Abstract

We present a dynamical model of the emergence of firms as opposed
to a flat labour market where entrepreneurs would recruit workers for
each business opportunity. The model uses a preferential choice of
partners based on previous collaborations experience. A sharp transi-
tion in the parameter space separates an ordered regime, where pref-
erential links establish, from a disordered regime corresponding to a
fast turnover of employees.
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1 Introduction

Standard micro-economics concentrate on the description of markets
but is seldom interested in production. Several economists discussed
the concept of a firm, as opposed to an open labour market where en-
trepreneurs would recruit workers on the occasion of each business op-
portunity. Coase [1] is one of them, who explains the existence of firms
as institution because they reduce the transaction costs with respect to
an open labour market. Several other aspects such as principal-agent
theory, coalition theory, information processing, technical evolution
of firms have been discussed by game theoretists and evolutionary
economists (see the papers of Axtell [2] and Chang etal. [3] for a
review).

Whatever the rationale proposed by economists to account for the
existence of firms, their perspective is based on efficiency and cost
analysis. Little attention is paid to the dynamics of emergence and
evolution of firms, except in the references we now quote.

There is a literature in Computational Economics, i.e. based on
computer simulations, which compares the performance of different
firm structures, e.g. Marengo [4] and Miller [5] . Their inspiration,
as ours, comes from the bounded rationality approach developped for
instance in March and Simon [6]. But they consider firms and work
relationship as given. Closer to our approach is the evolutionary per-
spective developped by Axtell [2] and the organisation of firms as
reactions to business opportunities developped by Epstein [7].

The aim of the present manuscript is to check the global dynam-
ical properties of a very simple model based on bounded rationality
and reinforcement learning. Workers and managers are localised on a
lattice and they choose collaborators on the basis of the success of pre-
vious work relations. The choice algorithm is largely inspired from the
observation and modeling of long term customer/sellers relationships
observed on perishable goods markets discussed in Weisbuch etal[8]
and Nadal etal[9].

The model presented here is in no way an alternative to Coase.
We describe the build-up of long term relationships which do reduce
transaction costs, and we deduce the dynamical properties of networks
built from our simple assumptions.

We first discuss in section 2 a multi-entrepreneur model which al-
ready exhibits long term relationships among historically selected sets
of workers. A single entrepreneur model discussed in section 3 allows
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to quantify the conditions for the emergence of these long term rela-
tionships. But since these models only predict linear firm structures,
we add in section 4 a further condition limiting the fraction of work
load attributed by each node to its subordinate nodes to generate tree
structures.

2 The multi-entrepreneurs model

2.1 The model

Let us imagine a production network of workers: we use the simplest
structure of a lattice: at each node is localised a ”worker” with a given
production capacity of size 1. Business opportunities of size Q ran-
domly strike ”entrepreneur” sites at the surface of the lattice. The lat-
tice can be of any dimension, but one dimension perpendicular to the
surface, is oriented. Orders propagate inward from the entrepreneur,
and production once achieved propagates outward (downstream). We
then denote the lattice dimension as 1+1 for square lattices repre-
sented on figures 1, 2 and 6 but numerical simulations where also
done in 1+2 and 1+3 dimensions.

The work load received by the entrepreneur is too large to be
carried out by her: she then distributes it randomly to her nearest
neighbours upstream, except for a work quantity of size one which she
performs herself.

We here postulate that the choice reflects a re-enforcement learning
mechanism. The entrepreneur uses a probabilistic choice rule based
on preferences learned from past experience.

The probability of choosing neighbour j is given by the logit func-
tion:

pj = exp(βJj)/
nb∑

k=1

exp(βJk) (1)

where the sum extends to all subordinate neighbours of the node.
The preferences Jj are updated at each time step according to:

Jj(t) = (1− γ)Jj(t− 1) + qj(t) (2)

where qj(t) is the work load attributed to node j. Preferences are
thus moving averages of the work load transfered across links. The
rationale for equation (2) is that preferences reflect past gains obtained
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from the relation between the entrepreneur and the worker and that
the entrepreneur gains are proportional to the work load. Equation
2 is the simplest form of a set of models where the gain term could
be any function of qj(t), including eventually stochastic terms related
the hazards of production.

Every worker receiving a workload re-distribute it according to
the previous principles, playing himself the role of an entrepreneur.
Whenever the received load is one, the worker performs it and he has
no children nodes. The work load distribution then proceeds up to a
limited depth, obviously bounded by Q.

One time step corresponds to the distribution of the initial work
load across the set of collaborators of the entrepreneur who received
it.

A series of work loads randomly strike the entrepreneur sites at
successive time steps. We want to characterise the asymptotic struc-
ture of work loads and preferences generated by a large number of
work loads presented in succession to the entrepreneurs.

2.2 Simulations

Let us start from a lattice structure submitted to a random flow of
business opportunities striking randomly entrepreneur sites. Each
business opportunity results in flows of work load distributed from
the entrepreneur site across the lattice according to rules 1 and 2
given above.

The initial conditions are all sites with zero work load and all pref-
erences J = 0. Under the influence of incoming work loads, one can
observe online the progressive build-up of preferences and the evolu-
tion of work load repartition from initial blobs flowing from surface
hits towards linear paths after a large number of steps. Stability of
the patterns is obtained after a transient period of the order of LQ/γ
where L is the lattice width. This expression comes from the fact that
a surface site is hit on the average every 1/L step and the build-up of
preferences necessitates Q/γ strikes.

Figure 1 displays the moving average of the work loads at each
lattice site after the transient period. The moving average tells us
how much work load was taken (and accumulated for the purpose of
the display) by each site over a period of the order of 1/γ.

Although all surface sites have been randomly and uniformly stricken
by business opportunities, the accumulated work loads are far from
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Figure 1: Moving average of work loads across the lattice after the transient
period (100000 iterations per site). White sites correspond to zero load,
gray levels to intermediate loads and black to maximum loads (50). Lattice
depth=50, lattice width=100. γ = 0.01, β = 0.2, Q = 50 .

uniform in depth. One notices linear paths of work distribution anal-
ogous to ants foraging trails; the analogy is not fortuitous, both struc-
tures result from similar re-enforcement learning mechanisms. More
precisely the black (heavy loads) trails are very contrasted with re-
spect to a background of unemployed nodes at intermediate depth.
At extreme depth the light gray blobs correspond to nodes that are
sometimes involved in work, but with less intensity and frequency.
Just under the surface, inhomogeneities are less contrasted, due to
the uniform probability of business opportunity arrivals; their struc-
ture resemble river basins where water is collected towards the main
river of a valley. In our case, we are observing work flows and the un-
derlying structure results from the shaping of the preference landscape
by re-enforcement learning.

In terms of business, we interpret the work load trails as stable
business relationships, establishing the conditions for the emergence
of firms. Whenever business opportunities strike in their neighbor-
hood, the same set of workers gets regularly involved sharing the work
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load. Closer to the surface, the divergence of trails reflects the fact
that workloads are collected from different surface sources. In depth
the weakening of the averaged work load is due to the convergence of
two factors: total workloads are attenuated in depth and their repar-
tition is more balanced. We will discuss in the next section a even
more simplified model with a single entrepreneur receiving loads at
the surface.

3 A single entrepreneur

3.1 Simulation results: snakes and blobs

The single entrepreneur model gives a clearer picture and quantitative
results. The model is the same as in the previous section, except that
a single site receives business opportunities of size Q.

Work load propagate across the lattice, and after a transition pe-
riod of the order of several Q/γ, stable structures such as those rep-
resented on Figure 2 appear. The figure displays workloads obtained
in a (1+1)-dimensional lattice at the final stage of one simulation.

The work load path starts from the surface with a deterministic
region (the snake) such that each node has only one child-node. The
same child always gets all the charge distributed at this stage. The
path ends with a blob part, where the charge is distributed to 2 or 3
nodes. In the blob, the repartition fluctuates from one instance to the
next one.

On figure 2 the snakes extends from the initial load of 20 to the
load of 7 followed by a small blob of height 3. Parameters for this
simulation were γ = 0.3, β = 0.3.

More generally, according to β, γ and load values, two dynamical
regimes are observed: a quasi-deterministic regime such that only one
link out of 2d+1 is systematically chosen resulting in a ”snake” portion
of the work pattern, and a random regime where all 3 links are evenly
used, resulting in a ”blob” portion of the work pattern. The interface
between the two regimes corresponds to

β(q(z)− 1)/γ = Constant (3)

where q(z)−1 is the work load distributed by a node receiving charge
q(z) at depth z (the -1 term corresponds to the fact that the distribut-
ing node takes a work load of 1 for himself to accomplish). Because
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Figure 2: One instance of the work load repartition at equilibrium from an
initial load of 20 at the top site. The load is first distributed with a strong
preference for one neighbour out of three; it is further distributed more evenly
starting from load 7. β = 0.3, γ = 0.3, Q = 20.

the work load to be distributed, q(z) − 1 decreases with increasing
depth z, there is a given depth where the interface between the deter-
ministic regime (the ”snake”) and the random regime (the ”blob”) is
located as observed on figure 2.

3.2 The mean field solution

A mean field theory for multiple choices has been proposed in Weis-
buch etal[8] and Nadal etal[9] to explain the two regimes and the
transition.

At equilibrium equation 2 gives:

γJj = qj (4)

where Jj and qj are equilibrium values. The mean field approximation
consists in replacing qj by its expectation q.Pj , where q is the charge
to be distributed. We then obtain the following implicit equation for
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Jj :

Jj =
q

γ

exp(βJj)∑nb
k=1 exp(βJk)

(5)

Solutions of equation 5, in fact of the system of equivalent equa-
tions for all Jj , is represented on figure 3, for a choice among 3 possible
partners. We see that at lower β value, all three preferences are equal.
But for larger β value, one preference is large and quickly reaches a
maximum value of q/γ while the two others are small. The symmetric
solution is unstable and separate three basins of attraction in which
one preference is large and the two others are small.

β

0 0.025 0.05

J1

J2,J3

0

60

120

Figure 3: Solutions of the mean field equations (5), for 3 partners, γ =
0.1, q = 10. Below the critical value of β = 0.03, the three preferences are
equal and constant. Above, one preference J1 is large, and soon reaches the
maximum value of q/γ, while the other two J2, J3 tend towards zero when β
increases. In that region the symmetric root is unstable.

These results presented on figure 3 were obtained by numerical
methods, but the transition point can be derived analytically. Sum-
ming equation 5 over all neighbours j yields:

nb∑

k=1

Jj = q/γ (6)
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This equation has to be verified by any solution for the Jj ; it is verified
by the symmetric solution:

Jj =
q

γ × nb
(7)

which also satisfy equation 5. Is this solution stable? It is only the
case when (β × q)/(γ × nb), the derivative of the RHS of equation 5
with respect to Jj , is smaller than one (a graphical solution is based
on checking staircases between the RHS expression and the first bi-
sectrix).

z

8 14 20

J1

J2,J3

0

200

400

Figure 4: Solutions of the mean field equations (5) as a function of z for
constant β = 0.03, and γ = 0.03, Q = 20. For lower z values, in the tail
regime, the preferences are those obtained in the simulations (see figure 5).

In our case the number of choices nb is the number of neighbours
2d + 1 in the lattice, and q at depth z is q(z) − 1. The transition
between the head and tails regime at a depth z then obeys:

β ∗ (q(z)− 1)
γ

= 2d + 1 (8)

For larger values of q(z), all the work load is transfered to a single
neighbour with a preference coefficient of (q(z) − 1)/γ, and all other
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coefficients are 0. For lower values of q(z), all preference coefficients
are equal, with possible fluctuations around the interface.
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Figure 5: Evolution of the preference coefficient with distance from the ”sur-
face” observed in simulations. For smaller depths, in the tail region, the
preference coefficients are either strong ((q(z) − 1)/γ) and independent of
the dimension, or zero. Transition are observed around res. charges of 5, 4
and 3 rather than for 2d + 1 = 7, 5 and 3 resp. as predicted by the mean
field theory. β = 0.03, γ = 0.03, d = 1, 2, 3.

We plotted in figure 4 the theoretical solution of equation 6 when z
varies; q in equation 6 is replaced by q− 1− z. The theoretical curves
are similar to the preferences observed in the simulations (figure 5) for
the smaller values of z. These simulations where done in 1+1, 1+2
and 1+3 dimensions.

3.3 Partial conclusions: what is missing?

The simple reinforcement learning presented here does end-up in a
stable path in the worker space represented here by the snake struc-
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ture, which we interpret as a firm. On the other hand we would rather
imagine firms as hierarchical structures such as trees [10, 11] . Because
of the blob-snake sharp transition as a function of z, we never observe
a well balanced tree with a selection at each node of several preferred
collaborators, but rather either a nearly complete preference for one
neighbour or roughly equal preference for all.

In conclusion, the present model explains the stability of employ-
ment relations in the firm, but something has to be added to it to
explain the more balanced workload repartition observed in real firms.

4 Forcing link multiplicity

In real life link multiplicity arises for many reasons:

• A boss is able handle several subordinates and wishes it: several
subordinates bring more profit to him. Furthermore they might
have different skills and handle different tasks.

• The boss is risk averse to having a single subordinated line: in
a production context, it is better for him not to face a single
provider who would be in a strong position to get most of the
added value of production; furthermore a single line has some
chances to get disrupted: one would rather have several lines to
lower chances of total shortage.

A short circuit to link multiplicity is to impose it from the be-
ginning: we can simply extend our model by saying that each node
recruits a minimum number of subordinate nodes: the standard algo-
rithm ( moving average of flux + logit choice) is then used, except that
we limit the transfered charge to each sub-node to (q − 1)/m, where
m is the desired minimum number of subnodes. We thus impose a
number of subnodes between m and the maximum number of virtual
subnodes, say n.

In fact because, since each node ends up in having several children,
some care has to be taken to avoid that nodes have several parents.
We then started from a tree, rather than a lattice, as the underlying
structure.

In figure 6, each node has nb = 3 possible children nodes, but a
higher limit of q/2 for the transfered charged was imposed for each
link. The figure represents the preference acquired after 1000 iteration
steps, for γ = 0.1, β = 0.1, and Q = 60. The color code is black=60
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for nodes and 30 for links, to white=0 for both. We observe that the
nodes in the first layers display a strong preference for two links and
that the load distribution starts being more balanced from the third
layer.

Figure 6: One instance of the work load repartition on a 3-tree when fluxes
across each link are limited to one half of the incoming charge. Darkness
codes the magnitude of fluxes and workloads. β = 0.1, γ = 0.1, Q = 60.

The variation of the fluxes J(i, j) as a function of depth is repre-
sented in figure 7 obtained for a 5-tree, namely a tree where each node
is connected to 5 possible children. Again the same algorithm is used
to reinforce connections, with a distribution of work load limited to
(q−1)/2 at each subnode. (1000 iteration steps, λ = 0.1, β = 0.1, and
Q = 120).

Figure 7 shows that at level resp. 1, 2 ,3 the number of non-zero
fluxes are resp. 2, 4, 8, as compared to resp. 5, 25, 125, the total
number of subnodes at these levels: the selection of two subnodes
among five possible has then been achieved, and this selection is stable.

In conclusion, limiting the size of the work-load passed to subnodes
allows to induce a tree-structure, but does not change the regime
transition: when the work load is limited to (q−1)/m, it is divided into
only m subnodes as long the workload is large enough to satisfy the
ordered regime condition (equation 6). When the work load becomes
too small, it is randomly distributed to all neighbours.
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5 Conclusion

We have shown that simple re-enforcement learning coupled to a logit
choice is sufficient to generate long term work relationships among
historically selected sets of agents. We interpret these connected sets
as prototypes for firms. A supplementary mechanism limiting the
fraction of transfered work loads to subordinates allows to generalise
to the familiar tree structure observed in real firms.

Equation 6 of the model predicts the conditions for the emergence
of firms: large work loads (Q), selectivity of partner choice (large
β) and frequent enough business opportunities (large 1/γ). (For the
last condition, we take into account the fact that the time between
business opportunities was set to 1. More precisely, 1/γ is the ra-
tio between the frequency of business opportunities and the rate of
preference updating).

The model is admittedly very simple and does not takes into ac-
count many important features of modern economies such as the role of
capital investment (machines), technological investment (in the widest
sense), workers and services specialisation etc. Furthermore, business
opportunities are here presented as independent, since workers recruit-
ment and production are occurring sequentially. They are not in real
life, and one function of the firm is the scheduling of many tasks in
order to realise parallel processing of many orders.

But even as simple as it is, the present model is a good candidate
to incorporate more features and to be applied to present day issues
such as merger/acquisition or outsourcing.
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Figure 7: Preferences on a 5-tree as a function of depth z, in logarithmic
scale. Fluxes are limited to one third of the incoming charge. + are the
fluxes obtained from numerical simulation, x correspond to the theoretical
prediction in the ordered regime. Fluxes less than one are not shown. β =
0.1, γ = 0.1, Q = 120.
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