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Abstract

Economic firms interact via suppliers/customers interactions. These
interactions define a production network. We here study the dynam-
ics of these networks under very simple assumptions and show that
they exhibit noticeable patterns of wealth and production. The main
dynamical properties of this time/space organisation are studied and
shown to be shared by a wide class of models.
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tributions, patterns, reaction-diffusion systems.

1 Networks of firms

Economic firms can interact via personnel, knowledge, capital, and
market relations. Their obvious connection through production has
received far less attention from economists than market interactions,
although supply chain problems are at the heart of operational re-
search.

Economic activity can be seen as occurring on an economic network
(“the economic web”) where firms are represented by vertices and their
interactions by edges. In the case of providers/customers interactions
these edges are asymmetric.

Taking the view of economics as a generalised supply chain, one is
interested in those conditions ensuring a regular flow of goods across
the production network, or inversely, to check the frontiers separating



a regular flow regime from an avalanche of delivery failures which
could damage the economy.

One of the earliest papers on avalanche distribution in economic
networks is due to Bak et al [1]. It concerns production networks:
edges represent suppliers/customers connections among firms engaged
in batch production activity. The authors describe the distribution
of production avalanches triggered by random independent demand
events at the output boundary of the production network.

The recent cascade of bankruptcies which occurred in Eastern Asia
in 1997, provoked some research on the influence of the loans network
structure on the propagation of “bad debts” and resulting avalanches
of bankruptcies ([2],[3]).

These papers ([1],[2],[3]) are not based on any empirical descrip-
tion of the network, but assume a very simple interaction structure:
periodic lattice in Bak et al paper[l] and star structure in the pa-
pers about bankruptcies[2],[3]. They neither take into account price
dynamics.

The present paper is along these lines: we start from a very sim-
ple lattice structure and we study the consequences of simple lo-
cal processes of orders/production (with or without failure)/delivery/
profit /investment on the global dynamics: evolution of global produc-
tion and wealth in connection to their distribution and local patterns.
In the spirit of complex systems analysis, our aim is not to present spe-
cific economic prediction, but primarily to concentrate on the generic
properties (dynamical regimes, transitions, scaling laws) common to
a large class of models of production networks.

A minimal model of a production network will first be introduced
in section 2. Simulation results are presented in section 3. Section 4
is a discussion of the genericity of the observed dynamical behaviour:
we summarise the results of several variants of the simplest model.

2 A simple model of a production net-
work

We can schematise the suppliers/customers interactions among firms
by a production network, where firms are located at the vertices and
directed edges represent the delivery of products from one firm to its
customers (see figure 1).



Independent local failures to produce (or to deliver) by a firm might
give rise to the propagation of shortage across the production network.
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Figure 1: Firms are located at the nodes of the lattice. Delivered production
(YP) flows from the resource input layer (k = [) to the output layer (k = 0),
orders (YY) flow backward.

Let us start with a simple periodic lattice with three input connec-
tions of equal importance and three output per firm. The network is
oriented from an input layer (say natural resources) towards an output
layer (say the shelves of supermarkets). The longitudinal axis relates
to production transfer and the transverse axis can be thought as rep-
resenting either geographical position or some product space. We here
use a one dimensional transverse space to facilitate the representation
of the dynamics by two-dimensional patterns, but there is no reason
to suppose geographical or product space to be one-dimensional in the
real world. We study a 241 dimensions space in section 4.

In real economies, the network structure is more heterogenous with
firms of unequal importance and connectivity. Furthermore some de-



livery connections go backwards. Most often these backward connec-
tions concern equipment goods; neglecting them as we do here implies
considering equipment goods dynamics as much slower than consump-
tion goods dynamics. Anyway, since these backward connections enter
positive feedback loops, we have no reason to suppose that they would
qualitatively disrupt the dynamics that we further describe.

At each time step two opposite flows get across the lattice: orders
are first transmitted upstream from the output layer; production is
then transmitted downstream from the input layer to the output layer.

e Orders at the output layer

In agreement with earlier publications([2],[3]) we suppose that
orders are only limited by the production capacity Ag; of the
firm in position 0,¢, where 0 indicates the output layer, and ¢
the transverse position in the layer.

Yoo = q- Aoy (1)

Yp; is the order in production units, and ¢ a technological pro-
portionality coefficient relating the quantity of product Y to the
production capacity A, combining the effect of capital and labor.
q is further taken equal to 1 without loss of generality.

e Orders

Firms at each layer k, including the output layer, transfer orders
upstream to get products from layer k + 1 allowing them to pro-
duce. These orders are evenly distributed across their 3 suppliers
upstream. But any firm can only produce according to its own
production capacity Ag;. The planned production Yy, is then a
minimum between production capacity and orders coming from
downstream:

Y(kfl)i’)

Yii = min(q- A, Y 3

i Ev;

(2)

v stands for the supplied neighborhood, here supposed to be the
three firms served by firm k,¢ (see figure 1).

We suppose that resources at the input layer are always in excess
and here too, production is limited only by orders and production
capacity.

e Production downstream



Starting from the input layer, each firm then starts producing
according to inputs and to its production capacity; but produc-
tion itself is random, depending upon alea. We suppose that at
each time step some catastrophic event might occur with con-
stant probability P and completely destroy production. Fail-
ures result in canceling production at the firm where they occur,
but also reduce production downstream, since firms downstream
have to reduce their own production by lack of input. These
failures to produce are uncorrelated in time and location on the
grid. Delivered production kai by firm k, i given by:

Yii
Yi = (O Yiune m) ~e(t) (3)

i'ev)
It depends upon:

— production delivered upstream from its delivering neighbor-
hood v};

— whenever any of the firms ¢’ € v} at level k£ +1 is not able to
deliver according to the order it received, it delivers down-
stream at level k to its delivery neighbourhood v;s in pro-
portion of the initial orders it received, which corresponds
to the fraction term;

— €(t) is a random term equals to 0 with probability P and 1
with probability 1 — P.

The propagation of production deficit due to local independent
catastrophic event is the collective phenomenon we are interested
in.

Profits and production capacity increase

Production delivery results into payments without failure. For
each firm, profits are the difference between the valued quantity
of delivered products and production costs, minus capital decay.
Profits Il;; are then written:

My = p- Yo —c Ve Ny (4)
where p is the unit sale price, c is the unit cost of production, and
A is the capital decay constant due to interest rates and material
degradation. We suppose that all profits are re-invested into

production. Production capacities of all firms are thus updated
according to:

Aki(t + 1) = Aki(t) + Hki(t) (5)



e Bankruptcy and re-birth.

We suppose that firms which capital becomes negative go into
bankruptcy. Their production capacity goes to zero and they
neither produce nor deliver. In fact we even destroy firms which
capital is under a minimum fraction of the average firm (typ-
ically 1/50). A re-birth process occurs for the corresponding
vertex after a latency period: re-birth is due to the creation of
new firms which use the business opportunity to produce for the
downstream neighborhood of the previously bankrupted firm.
New firms are created at a unique capital, a small fraction of the
average firm capital (typically 1/25). (Adjusting these capital
values relative to the average firm capital < A > is a standard
hypothesis in many economic growth models: one supposes that
in evolving economies such processes depend upon the actual
state of the economy and not upon fixed and predefined values).

The dynamical system that we defined here belongs to a large class
of non linear systems called reaction-diffusion systems (see e.g. [8])
from chemical physics. The reaction part here is the autocatalytic loop
of production and capital growth coupled with capital decay and death
processes. The diffusion part is the diffusion of orders and production
across the lattice. We can a priori expect a dynamical behaviour
with spatio-temporal patterns, well characterised dynamical regimes
separated in the parameter space by transitions or crossovers, and
scale free distributions since the dynamics is essentially multiplicative
and noisy. These expectations guided our choices of quantities to
monitor during simulations.

3 Simulation results

3.1 Methods and parameter choice

Unless otherwise stated, the following results were obtained for a pro-
duction network with 1200 nodes and ten layers between the input
and the output.

Initial wealth is uniformly and randomly distributed among firms:

Ap; € [1.0,1.1] (6)

One time step corresponds to the double sweep of orders and pro-
duction across the network, plus updating capital according to profits.
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The simulations were run for typically 5000 time steps.
The figures further displayed correspond to:

e a capital threshold for bankruptcy of < A > /50;
e an initial capital level of new firms of < A > /25;

Production costs ¢ were 0.8 and capital decay rate A = 0.2. In
the absence of failures, stability of the economy would be ensured by
sales prices p = 1.0. In fact, only the relative difference between these
parameters influences economic growth (or decay).

Most simulations were monitored online: we directly observed the
evolution of the local patterns of wealth and production which our
choice of a lattice topology made possible. Most of our understanding
comes from these direct observations. But we can only display global
dynamics or static patterns in this manuscript.

3.2 Economic performance: the breakeven tran-
sition
The capital dynamics being essentially exponential, the parameter
space is divided in two regions, where economic growth or collapse are
observed. These regions are separated by a breakeven manifold. The
performance of the economic system can then be tested by checking
which prices correspond to breakeven. Drawing the breakeven mani-
folds in the parameter space allows to compare the influence of failure
probability, sale price versus production cost, network depth, time lag
between bankruptcy and rebirth and so on.

Figure 2 display the breakeven manifold in the failure probability
‘P and sale price p plane for different values of the network depth. The
growth regime is observed in the low P and high p region, the collapse
regime in the high P and low p region.

At low failure probability, the breakeven prices follow a linear re-
lation:

l
p:c+)\+§'73 (7)

where [ is the total number of layers. (The é comes from the fact
that the integrated damage due to an isolated failure is proportional
to the average number of downstream layers). At higher values of P,
interactions among firms failures are important, hence the non linear
increase of compensating prices.
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Figure 2: Regime diagram in the sale price versus probability of failure plane.
The time lag between bankruptcy and re-birth is 20. T'wo regions of growth
and economical collapse at large times are separated by lines which position
are fixed by simulation parameters. The red '+’ line was obtained for a 3
layers net, the green 'x’ line for a 5 layers net, the blue "*’ line for an 8 layers
net, and pink square line for a 10 layers net.



Breakeven manifolds are a simple test of the economic perfor-
mances of the network: when performances are poor, the compensat-
ing sales price has to be larger. We checked for instance that increasing
the bankruptcy threshold and new firms initial capital increase global
economic performance. On the other hand, increasing the time lag be-
tween bankruptcy and the apparition of new firms increase breakeven
sale prices in the non-linear region.

Most further results, dynamical and statistical, are based on runs
close to the breakeven price in order to avoid systematic drifts and
recalibrations.

3.3 Time evolution

The simplest way to monitor the evolution of the system is to dis-
play the time variations of some of its global performance. Figure 3
displays the time variations of total wealth A, total delivered produc-
tion Y?, and the fraction of active firms for a 1200x10 lattice, with
a probability of failure of 0.05 and a sale price of 1.185. Time lag
between bankruptcy and and new firm creation is either 1 (for the left
diagram) or 5 (for the right digram).

The features that we here report are generic to most simulation
at breakeven prices. During the initial steps of the simulation, here
say 1000, the wealth distribution widens due to the influences of fail-
ures. Bankruptcies do not occur as observed by checking the number
of active firms, until the lowest wealth values reach the bankruptcy
threshold. All quantities have smooth variations. Later, for £ > 1000
one observes large production and wealth fluctuations characteristic
of critical systems.

For larger time lag (5) between bankruptcy and firm re-birth,
bankruptcies can cascade across the lattice and propagate in both
network directions as checked by the decrease in the number of active
firms on the right diagram of figure 3 and the patterns of figure 5..

A surprising feature is that avalanches of bankruptcies are not
correlated with production level. Even when only one tenth of the
firms are active, the total production is still high. In fact, most of the
total production is dominated by large firms, and avalanches which
concern mostly small firms are of little consequence for the global
economy.

Time lag and network depth separate two distinct dynamical regimes:
one with no avalanches at small time lag and network depth; nearly
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Figure 3: Time evolution of wealth (red ’+’), production (blue *’), and
active firms (magenta empty squares). The network has 10 layers, 1200 firms
per layer, P = 0.05 (the failure probability). The left diagram corresponds
to a small time lag (1) between bankruptcy and firm re-birth, right diagram
corresponds to a larger time lag (5). Vertical scale is logarithmic.
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all firms are active (with non-zero production capacity). By contrast
in the avalanche regime the number of active firms can be strongly
reduced (by 90 perc. in the worst cases). The transition is rather
abrupt: the time averaged fraction of bankrupted firms changes from
zero in the absence of avalanches to a typical magnitude of 10 perc.
in the avalanche regime. The avalanche regime appears for time lags
equal or larger than 2 for 6 layer nets, 3 for 4 and 5 layer nets and 4
for 3 layer nets.

A similar avalanche dynamics is reported in Battiston etal[4] who
study a related model where bad debts induce higher credit and pro-
duction costs which might result into avalanches of bankruptcies.

3.4 Wealth and production patterns

Like most reaction-diffusion systems, the dynamics is not uniform
in space and display patterns. The wealth and production patterns
displayed after 5000 time steps on figure 4 and 5 were obtained for
P = 0.05 . They reflect wide distributions and spatial organisation.
In these diagrams, production flows upward. The upper diagram dis-
plays wealth A and the lower one production Y;. The intermediate
bar is the colour scale, black=0, violet is the maximum wealth or pro-
duction. (We in fact displayed square roots of A and Yy in order to
increase the visual dynamics of the displays; otherwise large regions
of the patterns would have been red because of the scale free distri-
butions of A and Yy, see further).

The important result is that although random production fluctu-
ations are uncorrelated, the inherent multiplicative (or autocatalytic)
process of production + re-investment coupled with local diffusion
results in a strong metastable local organisation: the dynamics clus-
ter rich and productive firms in ”active regions” separated by ”poor
regions” (in red or black).

Only larger time lags allow bankruptcies avalanches represented
on figure 5 by black regions in the production and wealth diagrams.

These patterns are evolving in time, but are metastable on a long
time scale, say of the order of several 100 time steps as seen on the
succession of production patterns at different steps of the simulation
as one can observe on figure 6.

The relative importance of active (and richer) regions can be checked
by a Zipf plot[5]. We first isolate active regions by ”clipping” the
downstream (along k axis) integrated wealth at a level of one thou-
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Figure 4: Patterns of wealth(upper pattern) and production (lower pattern)
after 5000 iterations steps with the parameter set-up of figure 3 (left) (time
lag =1), for a 200x10 lattice. For both patterns the output layer is the last
one above. The intermediate line is the colour code, with minimal amplitude
at the extreme left. We observe alternation of highly productive regions
(in pink, blue and green colour), with less active regions (in red). Local
production failures represented by black dots are randomly distributed across
the production pattern.

Figure 5: Patterns of wealth(upper pattern) and production (lower pattern)
after 5000 iterations steps with the parameter set-up of figure 3 (right) (time
lag is 5). The same alternation of active and less active regions is observed,
but with a larger time lag (5), we also get large zones of bankrupted firms in

black.
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Figure 6: Successive patterns of wealth after 250, 750, 1250, 1750 and 2250
time steps with the parameter set-up of figure 3 (right, time lag = 5) for a
1200x10 lattice.
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relative wealth

sandth of the total production. We then transversally (along i axis)
integrate the wealth of active regions and order these regional wealths
to get the Zipf plots (fig.7).
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Figure 7: Zipf plot of wealth of the most active regions for the standard
and adaptive firms models (cf. section 4). The vertical axis display the
production relative to the total production and the horizontal axis the rank
of the firm. The red '+’ correspond to the standard model with time lag =
5, green 'x’ to time lag = 1, and blue "* to the adaptive firms model with

time lag = 1.

All 3 Zipf plots display some resemblance with standard Zipf[5]
plots of individual wealth, firm size and city size. For the model
discussed here, the size decrease following approximately a power law.
The apparent exponent is one when the time lag is 1. It is much higher
when the time lag is 5.

Zipf plots of output (k = 0) active regions (not shown here) display
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the same characteristics.

When the time lag is 5, the most productive region accounts for
more than 50 perc. of total production. The figure is 18 perc. for
the second peak. The distribution typically is ”winner takes all”. The
equivalent figures when the time lag is 1 are 10 and 8.5 perc..

In conclusion, the patterns clearly display some intermediate scale
organisation in active and less active zones: strongly correlated active
regions are responsible for most part of the production. The relative
importance of these regions obeys a Zipf distribution.

3.5 Wealth and production histograms

The literature on multiplicative random dynamics [6, 7, 8] and the
direct observation of wealth and production patterns would lead us to
predict a scale free distribution of wealth and production, i.e. with
no characteristic scale apparent from the distribution, as opposed for
instance to Gaussian distributions.

The cumulative distribution functions (cdf) of firms wealth ob-
served on figure 8 are indeed wide range and do not display any char-
acteristic scale: the data on wealth and production (not shown) were
taken for the same conditions as the previous figures at the end of the
simulation, i.e. after 5000 time steps. The medium range of the cdf
when time lag is 1 (figure 8a) extends on one and a half decade with
an apparent slope of 1 +0.05 in log-log scale.

This observed dependence of the wealth cdf, log normal at lower
A values followed by power law at intermediate A values, is partly
consistent with expressions derived for pdf in the literature[6, 7, 8] on
coupled differential equations with multiplicative noise.

At higher wealth, the straight line giggles and drops much faster:
this is because of the underlying region structure. The last 80 perc.
of the wealth is concentrated in two rich regions and its distribution
is dominated by local diffusion phenomena in these regions.

The departure form the standard smooth distribution is even more
noticeable when avalanches are present. The large wealth shoulder is
bigger (95 perc. of production) and the first point at zero wealth
stands well above the rest of the distribution: it corresponds to those
50 perc. of the firms which are momentarily bankrupted. The fraction
of bankrupted firms fluctuates in time and so does the slope of the
linear segment (both fluctuations are correlated since the slope of the
linear segment depends upon the number of firms in the distribution).
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steps. Parameter choices are the same as the previous figures.

In conclusion, the observed statistics largely reflect the underlying
region structure: at intermediate levels of wealth, the different wealth
peaks overlap (in wealth, not in space!) and we observe a smooth cdf.
At the large wealth extreme the fine structure of peaks is revealed.

4 Model extensions and conclusions

The simple model of production networks that we proposed presents

some remarkable properties:

realistic production costs:

Scale free distributions of wealth and production.

Large spatial distribution of wealth and production.

A few active regions are responsible for most production.

Avalanches of bankruptcies occur for larger values of the time
lag between bankruptcy and firm re-birth. But even when most
firms are bankrupted, the global economy is little perturbed.

Are these properties generic to a large class of models?
We checked four variants of the original model, starting with more
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e Influence of capital inertia: production costs don’t instantly
readjust to orders; capital and labour have some inertia which
we modeled by writing that productions costs are a maximum
function of actual costs and costs at the previous period.

e Influence of the cost of credit: production failures increase credit
rates and production costs.

The simulations confirm the genericity of the semi-quantitative prop-
erties (patterns and cdf). Only breakeven prices are increased.

The third variant is a model with ”adaptive firms”. The lattice
connection structure supposes a passive reactive behaviour of firms.
But if a firm is consistently delivering less than the orders it receives,
its customers should order less from it and look for alternative sup-
pliers. Such adaptive behaviour leading to an evolutive connection
structure would be more realistic. We checked an adaptive version
of the model by writing that orders of firm ¢ are proportional to the
production capacity A of the upstream firms connected to firm ¢. Sim-
ulations gave qualitative results similar to those obtained with fixed
order ratios.

Figure 9: Wealth and production patterns for a network of ”adaptive” firms.
The conventions and parameters are the same as for figures 3, 4 and 5, for a
200x10 lattice. Time lag is 1, the two upper patterns correspond to t = 1500,
the lower ones were taken when ¢ = 1998.

We observe that adaptation strongly re-enforce the local structure
of the economy. The general picture is the same scale free distribution
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of production and wealth with metastable patterns. Adaptivity of
firms gives a more efficient economy with lower breakeven prices. Due
to the strong local character of the economy:

e Avalanches of production are observed (see figure 9), even when
time lag is short (time lag of 1).

e The spatial periodicity of the active zones is increased (see figure
9 with larger density of smaller active zones). But again the
activity distribution among zones is like ”winner takes all” (see
the Zipf plot of figure 7).

A fourth variant which we tested is increasing dimensionality from
141 dimension to 2+1 d lattices (one production axis and two trans-
verse axes). We know from physical systems that one dimensional
systems have peculiarities with respect to higher dimensions: to say
shortly, they can remain disordered on a much wider range of param-
eters. We then checked the dynamics of 2+1 dimension production
networks: each firm is connected with 9 inputs from firms upstream
+ 9 output downstream located on 2d lattices. Simulations where run
on a 50x50x5 network, at the breakeven price, with a time lag of 1 pe-
riod. Most features, such as time evolution, probability distribution
function of wealth and production, and patterns (see figure 10) are
similar to 141 d results.

Simulations display patterns with spikes of wealthier and more ac-
tive region, which is what we expected from empirical observation in
e.g. geographical economics (rich and active regions) or vegetation
patterns (shrubs in semi-arid regions[9]); but from a general reaction-
diffusion perspective, patterns such as spiral waves or stripes (zebra
structures) could have been predicted as well. In fact, local stable
spikes are computed in analogous systems with short range excitation
and long range inhibition[10]: in our case the equivalent of local exci-
tation is the lateral diffusion of orders and the equivalent of long term
inhibition is the bankruptcy process which suppresses firms according
to a global criterion.

241 d systems seem less sensitive to failures: the breakeven prices
were lower (1.06 and 1.075 for resp. adaptive and non adaptive firms)
reflecting the fact that higher dimensions offer more alternative path-
ways to production following local failures. Nevertheless avalanches
can still be observed.

In conclusion, this admittedly very simplified model - lattice con-
nection structure, Mickey Mouse economics with no trading prices -
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Figure 10: Patterns of wealth at the output (upper patterns) and input (lower
patterns) layers of 241 d production networks. The left panel displays a
network of non-adaptive firms and the right panel adaptive firms. Parameters
are the same except for the price (resp. 1.06 and 1.075 for resp. adaptive
and non adaptive firms). The same difference between adaptive (fig. 9) and
non-adaptive firms (fig 4 and 5) patterns can be observe in 241 d as in 141 d
networks, such as the higher spatial ftgjuencies of peaks, and the cylindrical
rather than volcano vertical shapes for adaptive firms.



give a new and direct explanation for the strong localisation of eco-
nomic activities. The standard economic literature, as presented for
instance in the book by Fujita and Thisse[11], attributes localisation
to exogenous heterogeneities at market equilibrium, while the class of
models presented in this paper attributes it to random fluctuations
amplified by growth without any a priori inhomogeneity.
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