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Abstract Historical data, theory and computer simulations support a connection between
growth and economic inequality. Our present world with large regional differences in eco-
nomic activity is a result of fast economic growth during the last two centuries. Because of
limits to growth we might expect a future world to develop differently with far less growth.
The question that we here address is: “Would a world with a sustainable economy be less
unequal?” We then develop integrated spatial economic models based on limited resources
consumption and technical knowledge accumulation and study them by the way of computer
simulations. When the only coupling between world regions is diffusion we do not observe
any spatial unequality. By contrast, highly localized economic activities are maintained by
global market mechanisms. Structures sizes are determined by transportation costs. Wide
distributions of capital and production are also predicted in this regime.

Keywords Patterns · Environment · Economics · Distributions · Integrated assessment ·
Energy

1 Introduction

Any geographical map of human economic activities display strong contrasts between world
regions. Rich “Industrial regions” concentrate most of wealth, industrial production and
human capital, while others are practically depleted of any economic activity. Traditional
geography relates these contrasts to physical geography and human history. In view of their
ubiquitous character, more recent views developed in Economic Geography for more than
150 years tried interpretations based on self-organisation as discussed in for instance [14].
Mathematical models proposed by economists are General Equilibrium models. By contrast,
we view the self organisation and spatial economic patterns as the results of dynamical
processes; in that respect, our interpretation goes with those of chemical patterns discussed
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by Prigogine [13] as dissipative structures, Rayleigh-Bénard rolls [5], Turing patterns in
Biology [28], patterns in the visual cortex [11] and so on.

We can use historical evidence to support the dynamic hypothesis. As discussed in
Bairoch [3] and followers [9], the industrial revolution strongly increased economic dis-
parities. Before the industrial revolution, average wealth of the western world circa 1750
was comparable to the average wealth of Asian countries while this ratio was increased by a
ten-fold factor at the end of the XXth century. More details can be found in the first chapter
of Economic geography [9].

One of the first attempt to develop the interpretation of economic spatial disparities as
the result of dynamical processes was proposed by a set of physicists and geographers in
[6, 10, 18, 32, 33]. The used a very simple mathematical model, the so-called AB model,
proposed earlier to explain the origin of life in [16, 17, 24, 25]. In the AB model, patterns
are the result of the noisy multiplicative growth of the B variable. We will rapidly give the
basis and the results of the AB model in the model section.

Our present concern is different: we are interested in the possible existence or survival
of economic disparities in a sustainable world with very limited growth. In other words,
if growth is absent, are there other positive interaction loops which would support spatial
patterns?

We start here from a “renewable resource” perspective. But, rather than trying to describe
the dynamics of the transition between a “business as usual” regime to a “sustainable econ-
omy” regime as most economists of the global change do [22, 27, 31], we here focus on the
future state of the world after the transition to a sustainable economy.

Although there exists a number of models in the economics literature, we take here a
physics and engineering point of view which takes into account several technical features
which are neglected in most of this literature.

– A standard assumption of economist is the possibility of infinite substitution among pro-
duction factors such as labour, capital and resources. For instance a firm lacking workers
for any reason would be able to reach equivalent production levels by increasing capital
investments. This assumption has been strongly criticised by some resource economists
[15]. We then propose a production function which does not allow infinite substitution
among resource and capital.

– An important aspect of renewable energy resources is that their influx is limited, since
they come essentially from solar radiation. Their yield per unit area is further limited by
physical constraints [19]. In the model that we propose the source term for energy is finite
and kept constant.

Since the issue of interregional equity is central to all negotiations concerning Climate
Change, let us stress that our perspective here is not prescriptive, but only descriptive, or
rather predictive. We here propose to figure out the consequences of future technical choices
in the energy sector on wealth distribution in the World.

The purpose of this communication is to discuss this problem using a simple framework,
coupling capital, technology and resource dynamics. Since we want to take into account
technological and resource dynamics, each component is simplified to the extreme, without
compromising the essentials. We then take a complex system approach: our predictions
are restricted to semi-quantitative laws generic to a class of models [1, 29], rather than
precise computations valid for one specific model. The advantage of such predictions is their
robustness to the specific details of the studied models. The complex system approach is also
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consistent with the CLAW1 (a Crude Look At the Whole [12]) perspective on sustainable
development advocated by Murray Gell-Mann.

We start by briefly recalling the basics and the results of the AB model which relates
growth with spatial inequalities in Sect. 2.1.

The simplest local version of the models are the three differential equation system dis-
cussed in Sect. 2.2. The equilibrium solutions of this model correspond to a limited growth.
We also discuss in Sect. 2.2 our specific modeling choices with respect more standard ap-
proaches in the economics of Global Change.

A more novel aspect of this analysis is the spatial variants presented in Sect. 2.3. We take
into account the fact that production is localised in a two dimensional space, as on Earth,
and we investigate the spatial repartition of economic activity.

We show, mostly by numerical simulations in Sect. 3 that depending upon the hypotheses
on the distribution of resources, passive diffusion or simplified market mechanisms, rather
different repartitions can be observed. One of the results is that market mechanisms induce
segregation of economic activities.

In Sect. 4 we draw the conclusions in terms of economics and future available technolo-
gies.

A short Appendix give the results of more systematic trials in scaling, pattern stability
and initial conditions.

2 Models

2.1 The AB Model

The AK model [4] is the most basic model of evolutionary economics, i.e. the part of eco-
nomics which describes growth and technical change. It is based on a simple differential
equation describing the evolution of capital K :

K̇ = ρAK − δKK (1)

AK is the production function linear in capital and technological coefficient A. A expresses
the efficiency of used technology. ρAK represents the fraction ρ of production AK which
is re-invested. The second term represents capital depreciation2 per unit time. The model
and its variants have been used extensively in evolutionary economics.

The AB model uses is a discretised version of Eq. (1) where variable name K is changed
for B . Variables A and B have integer values and the dynamics involves transition proba-
bilities in the population of A and B species occupying lattice cells. It has been originally
proposed by [16, 17, 24, 25] to discuss the origin of life in terms of auto-catalysis: the chem-
ical reactions involving the replication of DNA for instance use DNA template as an input
and their output is an increase in DNA content. In the AB model, species B is multiplied
by the reaction and A the second chemical species plays the role of a catalyst. The spatial
version of the model shows that self-replication can be locally maintained with B growing

1According to Gell-Mann, the use of very simple assessment models, the Crude Look At the Whole, is well
adapted to policy makers who don’t care about details.
2When firms invest in production rather than in buying stock, part of the capital decreases in time because
for instance of machines maintenance.
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Fig. 1 Scheme of interactions.
Each signed arrow corresponds
to a term in the system (2)–(5).
Natural Resources are supplied at
a constant rate φ. A, K and R (or
C a part of R), contribute to
production Y . Production is
re-invested partly in Capital, K ,
but consumes resources R.
A fraction of capital K is
invested in R&D to increase A.
A, K and R also decay linearly,
as represented by the arrows
towards 0

exponentially, even when average A concentration would not be sufficient to sustain growth
in a homogeneous vessel.

The application of the AB model to other fields of research, ecology and economics
is discussed in [6, 10, 18, 32, 33]. The “chemistry of economic reactions” in geographical
space is the creation of wealth: capital K is multiplied similarly to B thanks to technology A.
Not surprisingly equivalent results were obtained: concentration of economic activity in
favoured regions, those where skilled workers or cultural factors are present. The empirical
analysis is based on the transition in Eastern Europe in the nineties after the fall of the
Soviet Union and of the Popular Democracies. Poland for instance, displays geographical
patterns of economic activities, with very active production spots in contrast to economically
depleted regions.

In conclusion the simplest unlimited growth model, based on multiplicative noisy pro-
cesses, yields large distribution of wealth and production and contrasted spatial patterns of
economic activity.

2.2 The Homogeneous Model of a Resource Limited Economy

Let us start with a local description of economic processes as if all quantities were available
everywhere on earth without transportation cost. We then use a simple ordinary differential
equation model which variables are energy resources R, capital K and technical knowl-
edge A. The economic sector is reduced to a single product and the model can be consid-
ered as an extension of the class of AK models used in the description of technical progress
(Evolutionary economics). These 3 variables are coupled by processes such as production,
which uses resource, technical progress improving A thanks to capital investments etc. as
described in Fig. 1 and Eqs. (2)–(5).

We now use three-variable differential equations which do not take into account possible
spatial inhomogeneities. The results of this simple model will be used as a reference to
interpret the results of the spatial models.

Natural Resources R are supplied at a constant rate φ. Part of the resource, C for con-
sumption, is used for production. Since Sustainable energies are difficult to store, we intro-
duce a fast decay term δRR (think of electricity which is the intermediate form of the energy
resource). In our model, natural resources are a limiting factor, a hypothesis that applies well
to the energy sector and to traditional industries.

Production depends upon three factors, technology A, capital K and used resource C.
Production capacity includes a variable technical coefficient A; its variations represent tech-
nical progress, driven by capital investment. Production also depends upon the availability
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of resources. Several authors have stressed the importance of physical resources in produc-
tion basing their analysis on empirical evidence gathered during the 20th century such as
[15]. We suppose that a constant fraction of profits is re-invested in capital. Profits are the
difference between production in monetary units and costs.

The dynamics of the technical coefficient is first driven by investment of capital in re-
search and development which increases the technical coefficient in proportion to the avail-
able capital. We also take into account the limits of technology. For instance, the best solar
technology cannot yield more kilowatts than what is received from the sun. (The idea of an
upper limit to A is not common in Evolutionary Economics [21], and contradicts in some
sense our present experience of technical innovation in Information and Communication
Technologies, the media industries, financial services etc. But unlimited growth of technol-
ogy coefficients is not the case for extraction and energy industries [19], which concern us
in this paper.) The role of the K1 term in the denominator of Eq. (2) is to generates the upper
bound for the technical coefficient. The proportional decay term corresponds to the loss of
technicity (e.g. because of retirement of skilled workers) in the absence of maintenance (by
e.g. training).

Figure 1 shows the ‘chemistry’ of interactions among the three factors: A Technology,
K Capital and R Resource. Even without mathematics, such an interaction scheme inter-
preted in terms of system dynamics predicts the possibility of multi-stationarity (several
attractors) because of the two positive feedback loops between capital and production on the
one hand, and technology, production and capital on the other hand.3

A general formulation gives the following ODE system:

Ȧ = μ
K

K + K1
− δAA (2)

K̇ = ρ
(
Y (A,K,C) − p.C − δKK

)
(3)

Ṙ = φ − C − δRR (4)

C = C(A,K,R) (5)

where Y is production, depending upon A, K and C the level of resource used for produc-
tion. δA, δK , δR are linear decay terms, p is the unit price of the resource, and φ the constant
resource influx. ρ is the fraction of re-invested profits and μ the initial growth rate of the
technical coefficient.

We choose a production function:

Y = AKC

αK + C
(6)

which results in saturation of production in the presence of either an excess of resource or
an excess of capital. We suppose that a machine is able to process a given quantity of energy
for production; excess of resource is useless, but the machine remains idle when resource
is insufficient. We thus abandon the hypothesis of perfect substitution among production

3The scheme also allows to predict the possible emergence of “dissipative structures” in space [13]: a constant
influx of energy is dissipated after going through intermediate stages including positive loops involved in the
production process.
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factors commonly used by most economists. The chosen expression for Y still maintains
constant return to scale.4

The amount of resource to be used in production C(A,K,R) is computed from profit Π

maximisation:

Π = Y (A,C,R) − p.C (7)

where p is the price of the resource. With Y = AKC
αK+C

optimal resource consumption is:

Copt = K

(√
αA

p
− α

)
(8)

As a matter of fact, the level of available resources might be less that optimal; in that case,
since natural resource level R cannot become negative, the actual consumption level is:

C = min(Copt,R) (9)

2.2.1 Dimensional Analysis and Parameter Reduction

R and C are energies and φ is an energy flux, i.e. a power.
A has the dimension of a unitary cost in the expression of production. It correspond to

the value, in monetary units, of the good produced with one unit of energy.
Since the system has 3 variables plus time, we can use parameter changes to obtain a

simpler mathematical system. We take α = 1 in the equations: capital is expressed in the
unit corresponding to the processing of one energy unit per unit time. Further simplification
are possible, for instance taking ρ = 1 by changing the time unit by a factor ρ. We will not
do so in the present text to keep more explicit our choices of decay factors. But we used
these simplifications in order check the parameter space.

The present ODE formalism is a simpler description than the optimisation approach com-
monly used in the economics of Global Change. Our basic assumption is that constant frac-
tions of profits, themselves supposed proportional to production, are distributed in produc-
tive capital (increasing K) and in consumption (salaries and dividends).

Let us summarise at this stage the main differences in assumptions between “Climate
Change” economics [22, 27, 31] and our approach:

– Models of climate change are models of the transition towards a greener economy under
some environmental constraint, for instance a 2-degree temperature increase. They are
optimal control models: they investigate economic trajectories optimising a constant dis-
count rate utility function. But there is little agreement on which discount rate to choose
or even whether a finite discount rate is a reasonable assumption. By contrast, we are
here interested in a stabilised situation, after the transition(s). We then do not pretend to
give any results pertinent to the transition itself. In the period of time we are considering,
our simple assumption of a constant fraction of re-invested profits rather than a constant
discount rate of consumption used in “Climate Change” economics corresponds to an
equivalent degree of simplification.

4This expression from economics simply means that production scales linearly with the productions factors
K and C: a firm with twice as much capital using twice as much resource has a twice as much output.
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– Constant return to scale and perfect substitution among production factors hypotheses
make Cobb-Douglas production functions [8] a preferred choice among economists. On
the other hand, economists of renewable resources (see e.g. [7]) use production functions
bilinear in resource and effort (effort includes both Capital and Labour). In our view, the
first choice applies when the resource is abundant and when the limitation is on the side
of capital, but the second choice is more appropriate when the resources are rare. Specif-
ically, in this paper, all plots are drawn using a production function defined by Eq. (6);
i.e. based on constant return to scale but abandoning the idea of perfect substitution, thus
reflecting the limitation imposed by the scarcity of the resource on production.

– As in Evolutionary Economics [21], we take into account technological progress. But in
the case of energy production, there are physical limits which we here introduce. These
limits might come from thermodynamics, from laws of conservation of energy, or simply
from the surface occupied by power stations: a thorough discussion is given in [19].

2.2.2 Algebraic Solution of the Homogeneous Model

With a choice of AKR
K+R

as the production function Y the differential system 2–5 has several
stationary points. In the region of large capital, resource consumption C is limited by the
availability of the resource. We can then replace C by R and the simplified equations for the
stationary point are written:

R0 = φ

1 + δR

(10)

A0x

1 + x
= p

x
+ δKx (11)

μ
K0

K0 + K1
= δAA0 (12)

where x = K0/R0. The second degree equation relating x = K0/R0 and A0:

δKx2 + (p + δK − A0)x + p = 0 (13)

has two roots x1 and x2 which expression is simplified when5 (A0 − (p + δK))2 � 4pδK

x1 = A0

δK

(14)

x2 = p

A0
(15)

Only the first root corresponds to a stable positive fixed point and we finally obtain:

K0 = φμ

(1 + δR)δKδA

− K1 (16)

A0 = μ

δA

(
1 − K1

(1 + δR)δK

φ

)
(17)

5Since production is a concave function with respect to C, a positive profit is only made when production
increases faster than cost for low values of C. p < A is then a necessary condition for a positive profit. The
expressions obtained under the assumption A0 � p remain valid for a large price domain as checked by
numerical simulations.
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Surprisingly resource cost p appears only as a first order correction to K0:

K0 = φμ

(1 + δR)δKδA

− K1 − φp

(1 + δR)δK

(18)

although it controls how fast capital grows.
K0 is in first approximation the ratio of the product of source terms over the product of

decay terms.
With our choice of decay terms, δR � δK � δA, numerical integrations show that equi-

librium of the resource is first achieved, in times of the order of 1/(1 + δR) while the system
(after times of the order of 1/δK ) evolves in the (A,K) space along the slow manifold of
equation:

K = A
C0

δK

(19)

2.2.3 Adding Noise to the Model

All economic systems are subject to fluctuations in production, deliveries and market prices.
We checked by simulations that the results are little changed by introducing a noise level of
10 % on three parameters μ, ρ and price p. At each integration step, the parameter values
are random numbers drawn from a normal distribution with the mean and standard deviation
given as arguments.

Facing a fluctuating signal such as profit, from which an agent has to take a decision
such as investment, a good averaging technique to minimise the consequences of noise is
to take a moving average. Capital dynamics equation (3) shows precisely that Capital is the
moving average of Profit with a decay factor of δK , which is relevant in such a case. This is
the reason why we use Capital K as the signal for agents decisions to invest in R&D so as
to increase A as we already did in the equation describing the dynamics of A in Eq. (2).

2.3 The Spatial Models

Both variants are coupled map lattices. They use the same local dynamics as Eqs. (2)–(6)
with fluctuating μ, ρ and price p parameters. Only the nature of coupling neighbouring cells
differs.

2.3.1 The Spatial Model with Diffusion Coupling

Let us see what happens when spatial dynamics are introduced in the model. For a physi-
cist, the most direct and natural way to couple time and space dynamics is via diffusion
terms. We will here first check this approach, although its economic interpretation is not as
straightforward as in physical sciences:

– Diffusion of technology A is a standard assumption in the sociology of innovation [23].
– The outsourcing of production inputs by firms to external providers in their neighbour-

hood is one of the basis of the diffusion term for K . The decrease of moral hazard is one
more reason to invest in one’s neighbourhood. Transportation costs might also play a role
etc.

– Diffusion of the resource R is a simple representation of local market mechanisms among
neighbouring regions which would tend to equilibrate local disparities in R.

The corresponding dynamics are a reaction-diffusion system and we use coupled map
lattices for numerical simulations on a square lattice with cyclic boundary conditions.
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Fig. 2 The market process:
Cell i sends orders to e.g. cell j .
Upon receiving orders cell j

delivers according to orders and
availability of resource. All cells
receive constant resource flux Φ

from the sun

2.3.2 The Spatial Model with Trade Dynamics

From an economic perspective, trading among possibly distant providers and energy users
is a more sensible mechanism than passive diffusion. Simulations of trade in a variety of
situations such as stock exchange, Forex, perishable goods, etc. has been an active field
of research in the recent years. Some economists, empiricists as well as theoretists, often
noticed that the trading rules, the institutions, have a very important role in shaping the
market structure, as opposed to the vision of fluid exchanges guided by the Adam Smith
Invisible Hand. This is especially true in markets of perishable goods [30], and electricity,
the secondary form of renewable energy, is certainly a perishable good. One could imag-
ine to incorporate in our model models of markets based on Agents methods, but present
attempts with these methods yield impressive simulation times and do not even guarantee
convergence for any reasonable number of agents [20].

We rather take the view of Bounded Rationality advocated by e.g. Herbert Simon [26]:
because of limits in available information and cognitive processing, human agents base their
decisions on standard routines which have proven their efficiency according to collective ex-
perience. Although slightly more intricate to model than the full rationality and optimisation
used by standard economists, bounded rationality can be expressed in simple routines to be
incorporated in mathematical model which we here demonstrate.

We then use the following simplified description of a market (see Fig. 2). Cells are both
providers of resources and users of resources for production. The trade algorithm is the
following:

– The user in cell i “computes” its total consumption Ci based on profit optimisation: Profit
Πi is given by:

Πi = AiKiCi

Ki + Ci

− p.Ci (20)
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Optimal profit is obtained when:

Ci = Ki

(√
Ai

p
− 1

)
(21)

– The user i fractionates6 her order to different neighbouring providers j , including cell i,
according to their attractivity function f (Kj , dij ). The fraction f of orders to cell j de-
pends upon its economic power represented by Kj and upon its distance dij . f is nor-
malised such that:

∑

j

f (Kj , dij ) = 1. (22)

Orders Cij from user i are then distributed to providers j according to:

Cij = f (Kj , dij ).Ci (23)

The total amount of distributed orders is Ci .
– Providers j deliver in proportion to their actual resource level Rj and the total received

orders; when they don’t have enough resource to deliver all orders, they deliver:

Cji = Rj

order sij∑
j order sij

(24)

Otherwise they deliver the full orders.

Several attractivity function f can be imagined. We chose a priori linear dependence in
Kj

7 and exponential decay in dij , on the basis of an optimisation between the extra cost of
non-local purchase and the gain in information thanks to exploration of several providers as
in [30]. Taking price as linearly increasing over distance, the combined profit Π̂ is written:

Π̂ =
∑

j

AiKiCij

Ki + ∑
j

Cij − (p0 + tcdij ).Cij − 1

β

∑

j

Cij log(Cij ) (25)

where 1
β

is the value of information,8 tc is transportation cost and the last term is the entropy
of the distribution of orders, equivalent to Shanon information. Deriving with respect to Cij

with
∑

j Cij held constant one obtains the expression of Cij , from which deduce f :

f (dij ) = exp(−βtcdij )∑
j exp(−βtcdij )

(26)

6In fluctuating economic conditions, a customer never knows precisely whether her order to a provider will
be delivered. She then distributes orders to different providers to minimise risks. This is often described by
economists as the exploration/exploitation compromise: exploit available knowledge about best providers but
keep on exploring other possibilities.
7Actual profit could be a rational choice for attractivity. We already said that in noisy environments, actors

rather guide their choice on a moving average of profit upon characteristic time 1
δK

, which is precisely K

according to Eq. (3).
8Noisy environments induce losses when resources are not delivered. Checking more expensive non-local
providers for supply is an insurance against such losses; β is thus related to the cost of these failures of
delivery.
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Table 1 Table of parameters
used in the reported results.
μ and K1 are resp. the transfer
rate of capital to the technology
coefficient and its limiting factor,
ρ is the fraction of re-invested
profit and φ is the influx of
resource per cell. A uniformly
distributed noise level of 0.1 is
applied to variables μ, ρ and p0,
the base price of the resource.
δ are decay rates. Orders to
neighbours are decreased by a
factor f per unit distance. The
time unit is one year

Parameters Values

μ 0.3

K1 100.

ρ 0.2

φ 10

p0 10

δA 0.03

δK 0.15

δR 0.3

f 0.5

noise 0.1

f thus depends upon distance, but is independent of Kj . The chosen attractivity function
is often called a logit function [2] by economists which justify this choice by a ‘Shaking
Hand’ hypothesis: economic actors are supposedly driven away from optimality because of
stochastic processes.

The above algorithm corresponds to some procedural rationality balancing the explo-
ration/exploitation compromise. It is not optimal: more efficient algorithms could be imag-
ined such that agents would learn how much providers can deliver and choose accordingly.
The above described procedure is simple and adequate to the sophistication of the present
model. And furthermore, procedures improved by learning would re-enforce the concentra-
tion phenomena that we report in the results section.

Let us note that the procedures that we have chosen for trade can be interpreted as a kind
of “active transport” where capital attracts resource to be used to increase even more capital.
The trade and capital production processes thus allow to re-establish a positive reaction loop.

3 Simulation Results

All reported simulations use the same local dynamics as Eqs. (2)–(6) with fluctuating μ, ρ

and price p parameters.
Most spatial simulations reported here were run on a 50 × 50 square lattice with Von

Neumann neighbourhood (4 neighbours, N, S, E, W) and periodic boundary conditions (cells
at the upper (resp. right) edge of the lattice are connected to cells at the lower (resp. left)
edge). They usually last until time = 1000, with a time step of 0.001. Smaller time steps
yields equivalent results, but larger time steps favour spurious checkerboard structures well-
known in cellular automata with parallel iteration. Longer simulations on larger lattices gave
equivalent results described in the Appendix. Initial conditions were random values of A,
K and R distributed according to a Poisson distribution with average values computed from
Eqs. (10), (16) and (17). The role of initial conditions is discussed in the Appendix. We run a
number of simulations with different values of the parameters, and variants of the production
functions, but the reported figures were made with the set of parameters figuring in Table 1
and a production function given by Eq. (6) (Y = AKR

K+R
).

3.1 Local Diffusion of Resource R

When all variables A, K and R dynamics are driven by passive diffusion dynamics, their
distribution is narrow peaked and no spatial structure is observed. The interpretation of this
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Fig. 3 Spatial patterns at time 1000 of Technical knowledge A, Capital K , resource R and Production
displayed clockwise starting from the upper left square. The colour scale is logarithmic: from 0 (dark blue)
to 100,000 (dark red). The same lighter cells on the A, Capital K and Production patterns are active spots
while the dark blue regions are depleted of any economic activity (Color figure online)

absence of this spatial homogeneity is simply that the two positive loops of Fig. 1 do not
give rise to instabilities because the technical efficiency is near saturation and any further
increase of capital is limited by the availability of the resource.

3.2 Non-local Trade of Resource R

Trade dynamics described in Sect. 2.3.2 is specified by a trade neighbourhood. We have cho-
sen a maximum ‘Manhattan’ distance for trade of 5 cells, corresponding to a diamond shape
neighbourhood of 61 cells. In fact the important parameter is the ratio of the transportation
cost over information cost which defines an inverse characteristic length tc.β according to
Eq. (26). It characterises the exponential decrease of orders with unit distance by a constant
factor f = exp−(tc.β). Figures 3, 4, 5 and 6 were obtained with f = 0.5.

Figure 3 displays the spatial patterns of the technical coefficient, the capital, the resource
and the production. They are organised in very active spots (around 500) surrounded by less
productive zones. Patterns obtained at time 1000 are disordered; patterns taken after a longer
integration time (t = 10,000) display more regularity (Fig. 7).
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Fig. 4 Time variation of average Technical knowledge A, resource consumption C, production P and capi-
tal K

The time variations of the average quantities displayed in Fig. 4 is not very different from
those observed in the homogeneous system and in the system with only passive diffusion
(not presented here). The only noticeable difference is the decrease of the average technical
coefficient A since technicity is not maintained in the absence of production in depleted
regions. We checked that the asymptotic average values of capital, resource and production
are quite robust with respect to noise or to the spatial decay factor f : this is because the total
production and capital correspond to the exploitation of all available resource flux by those
active firms which have reached the limit technological coefficient μ

δA
.

The amplitude of spatial differences appears clearly when histograms are drawn (Fig. 5).
The log-log plots9 indicate scale-free distributions on several order of magnitude. These
wide distributions of capital and production reflects their multiplicative (or auto-catalytic)
dynamics.

Cumulative distribution function (Fig. 6) display more clearly the bimodal character of
the distribution of Production. A large fraction of the sites have nearly zero production. This
fraction increases with time from 2/5 at time t = 400 to 4/5 at time t = 8000; it seems to
saturate around 4/5. The parameters have been chosen such that the time unit is one year.
The distribution of active sites production extends over one order of magnitude. As observed
in Fig. 6, production difference slowly increases with time. The rich sites saturates early in
wealth and production, and due to the slower dynamics of the technical coefficient A, more
and more depleted sites are slowly driven to collapse. The collapse of A in the depleted
regions is the main factor responsible for the metastability of the patterns.

Increasing noise levels by a factor 2 does not really influence the results.
On the other hand changing market spatial decay constant f from 1 to 0.25 changes the

relative number of active spots as observed in Fig. 7 where f varies from 1 to 0.25.

9Since some variables also take 0 values they are translated by 0.1 to figure on the log-log plot.
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Fig. 5 Partial distributions functions of technical coefficient A, resource consumption C, and capital K ,
in log-log coordinates. Production distribution is not displayed for clarity but it is quite similar to capital
distribution

Fig. 6 Evolution of the cumulative distribution function of Production at large times

Since f is a coupling constant directly correlated with the interaction length 1/βtc by
expression (26) we might expect that a further decrease in f would bring the system in the
homogeneous regime. This is indeed the case when f = 0.1 or less; the transition occurs
around f = 0.2 for which mixed patterns are observed.
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Fig. 7 Production patterns at large integration times, 10,000, for different market spatial decay constants 1.0,
0.5 and 0.25 from left to right

4 Conclusions

Even such a rudimentary model allows semi-quantitative conclusions. Let us remind our
hypotheses:

1. Limitation on resource influx, technological coefficients and substitution of production
factors.

2. Market mechanisms in favour of the concentration of production to richest producers.

The first hypothesis limits the instabilities introduced by the positive loops production-
profit-capital investment-production . . . and production-profit-R&D investment-production
. . . The second hypothesis on the fact that capital attracts resources is sufficient to re-
establish one active positive loop. This loop results in spatial inequalities which are further
re-inforced by the depletion of technology in the already capital depleted regions. Our guess
is that if we would include other similar positive loops regarding the attraction of capital and
skilled workers by rich regions we would re-inforce this mechanism.

The elementary processes behind the pattern structure thus differs from Turing instability
where the positive loop is in the chemical reaction part; in our case, reactions saturate and
the instability comes from the market counter-diffusive part.

We tried to use a more or less realistic set of parameters. Most of them only change the
magnitude of the averaged variables A, K , R and C, or how fast the systems converges. The
crucial parameter is the size of the market in the vicinity of a customer/provider. This size
depends upon one reduced parameter, the ratio of information price to transportation cost.
It appears as the exponent of the function describing how fast orders decay with distance.
Fast (resp. slow) decay with distance results in a large (resp. small) number of production
centers. Resource is concentrated in production centers while no-producing regions are also
depleted in capital, technicity and available resource for their few machines. If coupling is
too weak, f ≤ 0.2, spatial structures disappear and homogeneity is again observed.

Capital and production distributions are bi-modal, with a very large peak at zero capital
and production. The active centers are distributed according to a nearly uniform distribution
with a sharp cut-off; their distribution extends typically over one order of magnitude.

Let us now try to translate our results into the real world and its future.
We insisted on physical constraints. Let us notice that our results also depends on what

economists call institutions: for instance how is the market organised. We based our analysis
on a stylised representation of the rules used by agents in a market of perishable goods. Such
rules are fundamental in creating (or not) positive loops in the attribution of resources. They
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are other institutional rules practised in our world and even more can be imagined. For
instance, auctions, export taxes, credit facilities, planning by a central institution as it was
the case in Soviet Union etc.

Let us now come back to the physics and economy of renewable energy sources:

– Renewable energy sources goes with higher transportation costs than the fossile resources
we presently use: wind mills and photo-voltaic cells generate electricity which transporta-
tion is more costly than oil, gas or uranium, because of losses and difficulties in storage.
Intermittency results in higher values of β , which combined with transportation costs
reduce interaction ranges.

– If nuclear energy were made available from fast breeders, we would again be in a low
transportation cost situation with little limit on the resource and we might expect a
stronger concentration of economic activities. Other technologies such as high Tc super-
conductor technology might also favour low transportation costs.

In conclusion, the use of wind mills and photo-voltaic cells would results in closer pro-
duction zones than presently. Uranium and thorium with fast breeders although not renew-
able, would maintain a larger dispersion of big production zones, for the time period during
which they would be available-say of the order of thousands years, which makes some time
to refine models and/or evolve new institutions.
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Appendix

We here report the results of numerical tests to check the meta-stability of the observed
patterns, possible scaling effects and the role of initial configurations.

5.1 Scaling

The system does no display noticeable side effects. We tested the number of active cells
with A > 100 for varying lattice sizes after 10000 iteration steps. The fraction of active sites
was respectively 19.8 % for a 30 × 30 cell lattice, 19.1 % for 50 × 50 cells and 19.6 % for
100 × 100 cells. We found that the observed difference in percentage to be not significative.

5.2 Patterns Stability

Because the system is noisy we used the Pearson correlation coefficient to measure the
correlation between a pattern of capital K taken at time 5000 and patterns observed at further
times until t = 10,000. We use a 50 × 50 network. The Pearson coefficient is measured by:

r(τ ) =
∑

i (xi(t) − x(t))(xi(t + τ) − x(t + τ))
√∑

i (xi(t) − x(t))2
√∑

i (xi(t + τ) − x(t + τ))2
(27)

The Pearson coefficient decreases from 1 to 0.99 in 5000 time steps which demonstrates a
long term stability after quasi equilibrium has been reached. We also checked the stability
of the correlations between one cell and its neighbours at varying distances over 5000 time
steps and similarly checked stability (Fig. 8).
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Fig. 8 Time evolution of capital spatial correlations at varying distances r(1), r(2), r(3) and r(4)

Fig. 9 Production patterns at large integration times, 1000, for different periodic initial conditions

5.3 Influence of Initial Conditions

A choice of initial conditions is arbitrary and we reported in Sect. 3 results obtained from
random initial conditions without any spatial correlation. On the other hand, since the
present state of the world is already structured in industrial regions, the possible importance
of initial structures is worthwhile to study. We then ran simulations with initial sinusoidal
patterns of A and K such that:

A(0) = 1 + 50
(
cos(kx) cos(ky)

)
(28)

K(0) = 1 + 250
(
cos(kx) cos(ky)

)
(29)

with several wave vectors k = 2nπ/L, n = 2, 5, 10 and lattice size L = 50 (Fig. 9). Resource
initial distribution were random.

The fraction of active sites is respectively 6.16, 11.18 and 19.32 % for n = 2, 5, 10. Not
surprisingly in view of the previously observed metastability, initial conditions do play a
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role in the final aspect of the patterns. The meso-scale initial periodicity is maintained while
the micro structure of the localised peaks of activity reflects the character of the dynamics,
independently from the initial conditions.

One might be tempted to investigate further the transition from present socio-economic
patterns to future conditions with different energy sources. Let us remind that we are not able
to describe the dynamics of the slow technological change that would drive the transition.
The above set of remarks does not allow precise predictions: what we can still conclude is
that some memory of the present large scale spatial structures could be maintained.
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