Direct surface.py

From Werner KRAUTH

(Difference between revisions)
Jump to: navigation, search
Revision as of 21:20, 22 September 2015
Werner (Talk | contribs)

← Previous diff
Revision as of 21:41, 22 September 2015
Werner (Talk | contribs)

Next diff →
Line 1: Line 1:
 +This page presents the program markov_disks_box.py, a Markov-chain algorithm for four disks in a square box of sides 1.
 +
 +__FORCETOC__
 +=Description=
 +
 +=Program=
 +
 + import random
 +
 + L = [[0.25, 0.25], [0.75, 0.25], [0.25, 0.75], [0.75, 0.75]]
 + sigma = 0.15
 + sigma_sq = sigma ** 2
 + delta = 0.1
 + n_steps = 1000
 + for steps in range(n_steps):
 + a = random.choice(L)
 + b = [a[0] + random.uniform(-delta, delta), a[1] + random.uniform(-delta, delta)]
 + min_dist = min((b[0] - c[0]) ** 2 + (b[1] - c[1]) ** 2 for c in L if c != a)
 + box_cond = min(b[0], b[1]) < sigma or max(b[0], b[1]) > 1.0 - sigma
 + if not (box_cond or min_dist < 4.0 * sigma ** 2):
 + a[:] = b
 + print L
 +
 +=Version=
 +See history for version information.
 +
 +[[Category:Python]]
 +
import random, math import random, math

Revision as of 21:41, 22 September 2015

This page presents the program markov_disks_box.py, a Markov-chain algorithm for four disks in a square box of sides 1.


Contents

Description

Program

import random

L = [[0.25, 0.25], [0.75, 0.25], [0.25, 0.75], [0.75, 0.75]]
sigma = 0.15
sigma_sq = sigma ** 2
delta = 0.1
n_steps = 1000
for steps in range(n_steps):
    a = random.choice(L)
    b = [a[0] + random.uniform(-delta, delta), a[1] + random.uniform(-delta, delta)]
    min_dist = min((b[0] - c[0]) ** 2 + (b[1] - c[1]) ** 2 for c in L if c != a)
    box_cond = min(b[0], b[1]) < sigma or max(b[0], b[1]) > 1.0 - sigma
    if not (box_cond or min_dist < 4.0 * sigma ** 2):
        a[:] = b
print L

Version

See history for version information.

import random, math

dimensions = 5
nsamples = 20
for sample in xrange(nsamples):
    R = [random.gauss(0.0, 1.0) for d in xrange(dimensions)]
    radius = math.sqrt(sum(x ** 2 for x in R))
    print [x / radius for x in R]
Personal tools