Gauss test.py
From Werner KRAUTH
This page presents the program markov_disks_box.py, a Markov-chain algorithm for four disks in a square box of sides 1.
Contents |
Description
Program
import random L = [[0.25, 0.25], [0.75, 0.25], [0.25, 0.75], [0.75, 0.75]] sigma = 0.15 sigma_sq = sigma ** 2 delta = 0.1 n_steps = 1000 for steps in range(n_steps): a = random.choice(L) b = [a[0] + random.uniform(-delta, delta), a[1] + random.uniform(-delta, delta)] min_dist = min((b[0] - c[0]) ** 2 + (b[1] - c[1]) ** 2 for c in L if c != a) box_cond = min(b[0], b[1]) < sigma or max(b[0], b[1]) > 1.0 - sigma if not (box_cond or min_dist < 4.0 * sigma ** 2): a[:] = b print L
Version
See history for version information.
import random, math def gauss_test(sigma): phi = random.uniform(0.0, 2.0 * math.pi) Upsilon = random.uniform(0.0, 1.0) Psi = - math.log(Upsilon) r = sigma * math.sqrt(2.0 * Psi) x = r * math.cos(phi) y = r * math.sin(phi) return [x, y] nsamples = 50 for sample in range(nsamples): [x, y] = gauss_test(1.0) print x, y