Heat bath ising.py
From Werner KRAUTH
Revision as of 21:23, 23 September 2015; view current revision
←Older revision | Newer revision→
←Older revision | Newer revision→
This page presents the program heat_bath_ising.py, a heat-bath algorithm for the Ising model on an LxL square lattice in two dimensions.
Contents |
[edit]
Description
[edit]
Program
import random, math L = 6 N = L * L nbr = {i : ((i // L) * L + (i + 1) % L, (i + L) % N, (i // L) * L + (i - 1) % L, (i - L) % N) \ for i in range(N)} nsteps = 10000000 beta = 1.0 S = [random.choice([-1, 1]) for site in range(N)] E = -0.5 * sum(S[k] * sum(S[nn] for nn in nbr[k]) \ for k in range(N)) E_tot, E2_tot = 0.0, 0.0 random.seed('123456') for step in range(nsteps): k = random.randint(0, N - 1) Upsilon = random.uniform(0.0, 1.0) h = sum(S[nn] for nn in nbr[k]) Sk_old = S[k] S[k] = -1 if Upsilon < 1.0 / (1.0 + math.exp(-2.0 * beta * h)): S[k] = 1 if S[k] != Sk_old: E -= 2.0 * h * S[k] E_tot += E E2_tot += E ** 2 E_av = E_tot / float(nsteps) E2_av = E2_tot / float(nsteps) c_V = beta ** 2 * (E2_av - E_av ** 2) / float(N)
[edit]
Version
See history for version information.