Sample transformation power.py
From Werner KRAUTH
Revision as of 15:05, 6 June 2024; view current revision
←Older revision | Newer revision→
←Older revision | Newer revision→
[edit]
Context
This page is part of my 2024 Beg Rohu Lectures on "The second Markov chain revolution" at the Summer School "Concepts and Methods of Statistical Physics" (3 - 15 June 2024).
[edit]
Python program
import random, math
import matplotlib.pyplot as plt
N_trials = 1000000
data = []
gamma = -0.7
for iter in range(N_trials):
Upsilon = random.uniform(0.0, 1.0)
#
# This is the sample transformation SMAC eqs (1.28), (1.29)
#
x = Upsilon ** (1.0 / (gamma + 1))
data.append(x)
plt.title('power-law distribution (sample transformation) $\gamma = $ '+ str(gamma))
plt.xlabel('$x$')
plt.ylabel('$\pi(x)$')
plt.hist(data, bins=100, density=True,label='data')
XValues = []
YValues = []
for i in range(5, 1000):
x = i / 1000.0
XValues.append(x)
YValues.append((gamma + 1.0) * x ** gamma)
plt.plot(XValues, YValues, label='theory')
plt.legend(loc='upper right')
plt.show()
