Search results

From Werner KRAUTH

For query "Math"
Jump to: navigation, search

There is no page titled ":Math". You can create this page.

For more information about searching Werner KRAUTH, see Searching Werner KRAUTH.

Showing below up to 20 results starting with #1.


View (previous 20) (next 20) (20 | 50 | 100 | 250 | 500).

No page title matches

Page text matches

  1. Publications WK (19228 bytes)
    31: ...uth ''Direction-sweep Markov chains'' J. Phys. A: Math Theor. 55 105003 (2022)]]
    203: ...heres and related systems'' Journal of Physics A: Math. Gen. 28, L597 (1995)]]
    241: ... $J=pm 1$ neural network'' Journal of Physics A: Math. Gen. ''' 22''' L519 (1989)
    245: ...namics of neural networks'' Journal of Physics A: Math. Gen. ''' 21''' 2995 (1988)
    247: ...bility in neural networks'' Journal of Physics A: Math. Gen. ''' 20''', L745 (1987)
  2. Group WK (13268 bytes)
    21: ...brillantly qualified to work on a famous paper by mathematician K. Böröczky on locally stable disk pac...
    44: ... Krauth Direction-sweep Markov chains J. Phys. A: Math Theor. 55 105003 (2022)]]
  3. Bernard Krauth Wilson 2009 (6284 bytes)
    17: ...te Carlo. This was even [[Lei Krauth 2018| proven mathematically]] in a special case, together with Ze ...
    37: moves starts at <math>(x,y)=(0.,0.)</math>.
    48: import math, pylab, sys, cPickle
    55: return math.sqrt(d_x**2 + d_y**2)
    89: x_dummy = x_image[0] - math.sqrt(1.0 - x_image[1]**2)
  4. Dress Krauth 1995 (2568 bytes)
    1: ...heres and related systems'' Journal of Physics A: Math. Gen. 28, L597 (1995)
  5. Krauth 2010 (5787 bytes)
    1: ...://www.oup.com/us/catalog/general/subject/Physics/Mathematicalphysics/?view=usa&sf=toc&ci=9780199574612 ...
    48: from math import sqrt, sinh, tanh,exp
  6. Bernard Krauth 2012 (24591 bytes)
    47: import math, pylab, sys, cPickle
    58: return math.sqrt(d_x**2 + d_y**2)
    97: del_x= math.sqrt(d**2 - x_vec[1]**2)
    227: import math, pylab, cPickle
    236: return math.sqrt(d_x**2 + d_y**2)
  7. Krauth 2002 (2404 bytes)
    18: import random, math
    22: norm = math.sqrt(sum(xk ** 2 for xk in x))
    26: dists = [math.sqrt(sum((positions[k][j] - positions[l][j]) ** 2...
    47: norm = math.sqrt(sum(xk ** 2 for xk in newpos))
    49: new_min_dist = min([math.sqrt(sum((positions[l][j] - newpos[j]) ** 2 \
  8. Trieste Lectures 2015 (2294 bytes)
    22: import math, random
    49: import random, math
    57: d_para = math.sqrt(4.0 * sigma ** 2 - d_perp ** 2)
  9. Direct disks box.py (793 bytes)
    8: import random, math
    17: min_dist = min(math.sqrt((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2) for...
  10. Event disks box.py (2986 bytes)
    9: import math
    28: del_t = - (scal + math.sqrt(Upsilon)) / del_v_sq
    52: abs_x = math.sqrt(del_x[0] ** 2 + del_x[1] ** 2)
  11. Event chain.py (2176 bytes)
    13: import random, math
    21: d_para = math.sqrt(4.0 * sigma ** 2 - d_perp ** 2)
  12. Gauss test.py (719 bytes)
    7: import random, math
    10: phi = random.uniform(0.0, 2.0 * math.pi)
    12: Psi = - math.log(Upsilon)
    13: r = sigma * math.sqrt(2.0 * Psi)
    14: x = r * math.cos(phi)
  13. Gauss 3d.py (471 bytes)
    7: import random, math
  14. Direct surface.py (529 bytes)
    7: import random, math
    13: radius = math.sqrt(sum(x ** 2 for x in R))
  15. Direct sphere.py (655 bytes)
    7: import random, math
    15: / math.sqrt(x ** 2 + y ** 2 + z ** 2)
  16. Thermo ising.py (978 bytes)
    10: import math, os
    31: weight = math.exp(- E / T) * dos[E]
  17. Markov ising.py (1406 bytes)
    8: import random, math
    27: if random.uniform(0.0, 1.0) < math.exp(-beta * delta_E):
  18. Cluster ising.py (1040 bytes)
    9: import random, math
    17: p = 1.0 - math.exp(-2.0 / T)
  19. Heat bath ising.py (1187 bytes)
    7: import random, math
    27: if Upsilon < 1.0 / (1.0 + math.exp(-2.0 * beta * h)):
  20. Combinatorial ising.py (3881 bytes)
    12: import numpy, math
    17: nu = math.tanh(beta)
    18: alpha = numpy.exp(comp_i * math.pi / 4.0) * math.tanh(beta)
    19: alphabar = numpy.exp(-comp_i * math.pi / 4.0) * math.tanh(beta)
    69: print 2 ** N * math.cosh(beta) ** n_edge * \

View (previous 20) (next 20) (20 | 50 | 100 | 250 | 500).



Search in namespaces :

List redirects   Search for
Views
Personal tools