Search results

From Werner KRAUTH

For query "Data"
Jump to: navigation, search

There is no page titled ":Data". You can create this page.

For more information about searching Werner KRAUTH, see Searching Werner KRAUTH.

Showing below up to 20 results starting with #1.


View (previous 20) (next 20) (20 | 50 | 100 | 250 | 500).

No page title matches

Page text matches

  1. Bernard Krauth Wilson 2009 (6284 bytes)
    64: data = []
    72: data.append(dist(L[i],L[j]))
    101: pylab.hist(data,bins=40,normed=True,alpha=0.5,cumulative=True)
  2. Holzmann Krauth 2008 (1166 bytes)
    4: ...hing in the thermodynamic limit. We interpret our data in the framework of the local-density approximati...
  3. Krauth 2010 (5787 bytes)
    64: def tower_sample(data,Upsilon): #naive tower sampling, cf. SMAC Sect. 1...
    65: for k in range(len(data)):
    66: if Upsilon<data[k]: break
  4. Navon Piatecki Guenter et al 2011 (1155 bytes)
    4: ...amples. For increasing repulsive interactions our data shows a clear departure from mean-field theory an...
  5. Bernard Krauth 2012 (24591 bytes)
    125: data = []
    138: data.append(dist(L[i],L[j]))
    206: f=open("event_stepped_13.data","w")
    207: cPickle.dump(data,f)
    209: pylab.hist(data,bins=40,normed=True)
  6. Comparin Krauth 2016a (1510 bytes)
    6: ...re this crucial observable to recent experimental data. The weak dependence of physical observables on t...
  7. Levy problem HW01 ICFP 2018.py (676 bytes)
    8: Ndata = 1000
    9: data = []
    12: for l in range(Ndata):
    14: data.append(x / Ndata - 1.0/(gamma + 1.0))
    15: pylab.hist(data,bins=100, range=(-1.0, 2.0), normed=True)
  8. Bayes tank problem HW02 ICFP 2019.py (910 bytes)
    9: data = range(1, N + 1)
    10: random.shuffle(data)
    11: data[0: 4] = sorted(data[0:4])
    12: # if data[3] == 14:
    13: if data[0: 4] == [1, 2, 4, 14]:
  9. Vortex pair.py (2992 bytes)
    9: def plot_spin(data, L):
    10: data = data.reshape(L*L)
    14: U = numpy.cos(data)
    15: V = numpy.sin(data)
    16: data = data.reshape(L, L)
  10. Hard disks: A Window into the World of Stat Physics (3699 bytes)
    33: ## Algorithms and data structures
  11. Li Todo Maggs Krauth 2020 (1530 bytes)
    5: ...ntation that uses compare-and-swap primitives for data access achieves considerable speed-up with respec...
  12. PastResearchNotices (28752 bytes)
    20: ...ntation that uses compare-and-swap primitives for data access achieves considerable speed-up with respec...
    81: ...nt-chain Monte Carlo]]), we confirmed our earlier data (see figure to the left). We are all happy about ...
    83: ...e! The inset gives the difference between the old data (from last year) and the new ones. Let me note th...
  13. Levy problem HW01 ICFP 2017.py (627 bytes)
    8: Ndata = 1000
    9: data = []
    12: for l in range(Ndata):
    14: data.append(x / Ndata - 1.0/(gamma + 1.0))
    15: pylab.hist(data,bins=100, range=(-1.0, 2.0), normed=True)
  14. PhD2019 Proposal (5501 bytes)
    1: ...ter statistical physics, quantum computation, and data science'''
    48: ...ng. The use of the Beyond-Metropolis approach for data science will thus also be investigated.
  15. Li Nishikawa et al 2022 (1587 bytes)
    4: ...ling algorithms. A synopsis of hard-disk pressure data as well as different versions of the sampling alg...
  16. CardShuffle.py (535 bytes)
    3: data = []
    4: HistoData = {}
    13: if LL in HistoData: HistoData[LL] += 1
    14: else: HistoData[LL] = 1
    15: data.append(iter2)
  17. Direct N bosons.py (2580 bytes)
    25: def tower_sample(data, Upsilon): #fully naive tower sampling
    26: for k in range(len(data)):
    27: if Upsilon < data[k]: break
  18. Walker.py (2274 bytes)
    40: data = [0] * N
    49: data[sample] += 1.0 / NSample
    51: print(pi[i], data[i])
  19. Top to random simul.py (579 bytes)
    8: data = {}
    15: data[L] = data.get(L, 0) + 1
    16: for k in data:
    17: print(k, data[k])
  20. Diffusion.py (2640 bytes)
    14: data = []
    20: data.append(pos)
    22: plt.hist(data, bins=N, range=(-0.5, N-0.5), density=True)

View (previous 20) (next 20) (20 | 50 | 100 | 250 | 500).



Search in namespaces :

List redirects   Search for
Views
Personal tools